K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2015

=abc-ab-bc-ca+a+b+c-1

=(abc-bc)-(ca-c)-(ab-b)+(a-1)

=bc(a-1)-c(a-1)-b(a-1)+(a-1)

=(a-1)(bc-c-b+1)

=(a-1)(c(b-1)-(b-1))

=(a-1)(b-1)(c-1)

2 tháng 9 2021

\(abc-\left(ab+bc+ac\right)+\left(a+b+c\right)-1=\left(abc-ab\right)-\left(bc-b\right)-\left(ac-a\right)+\left(c-1\right)=ab\left(c-1\right)-b\left(c-1\right)-a\left(c-1\right)+\left(c-1\right)=\left(c-1\right)\left(ab-b-a+1\right)=\left(c-1\right)\left[b\left(a-1\right)-\left(a-1\right)\right]=\left(a-1\right)\left(b-1\right)\left(c-1\right)\)

2 tháng 9 2021

\(\left(ab-1\right)^2+\left(a+b\right)^2=a^2b^2-2ab+1+a^2+2ab+b^2=a^2+b^2+a^2b^2+1=a^2\left(b^2+1\right)+\left(b^2+1\right)=\left(a^2+1\right)\left(b^2+1\right)\)

2 tháng 9 2021

\(\left(ab-1\right)^2+\left(a+b\right)^2=a^2b^2-2ab+1+a^2+2ab+b^2=a^2b^2+a^2+b^2+1=\left(a^2b^2+a^2\right)+\left(b^2+1\right)=a^2\left(b^2+1\right)+\left(b^2+1\right)=\left(a^2+1\right)\left(b^2+1\right)\)

12 tháng 9 2021

(b+a)^2*(b^2-2*a*b+a^2+4)

12 tháng 9 2021

\(=\left[a^2+b^2+2-2\left(ab-1\right)\right]\left[a^2+b^2+2+2\left(ab-1\right)\right]\\ =\left(a^2+b^2-2ab+4\right)\left(a^2+b^2+2ab\right)\\ =\left(a+b\right)^2\left(a^2+b^2-2ab+4\right)\)

26 tháng 9 2021

\(=4ab\left(ab+ax+bx+x^2\right)=4a^2b^2+4a^2bx+4ab^2x+4abx^2\)

26 tháng 9 2021

Nhân tử mà ??!!

24 tháng 8 2019

\(a^3-b^3+c^3+3abc\)

\(=\left(a-b\right)^3+c^3+3abc+3a^2b-3ab^2\)

\(=\left[\left(a-b\right)^3+c^3\right]+3ab\left(c+a-b\right)\)

\(=\left(c+a-b\right)\left[\left(a-b\right)^2-\left(a-b\right)c+c^2\right]+3ab\left(c+a-b\right)\)

\(=\left(c+a-b\right)\left(a^2-2ab+b^2-ac+bc+c^2+3ab\right)\)

\(=\left(c+a-b\right)\left(a^2+b^2+c^2+ab-ac+bc\right)\)

2 tháng 9 2021

\(x^2-xy\left(a+b\right)+aby^2=x^2-xya-xyb+aby^2=x\left(x-ya\right)-yb\left(x-ya\right)=\left(x-ya\right)\left(x-yb\right)\)

\(x^2-xy\left(a+b\right)+aby^2\)

\(=x^2-axy-bxy+aby^2\)

\(=x\left(x-ay\right)-by\left(x-ay\right)\)

\(=\left(x-ay\right)\left(x-by\right)\)

1 tháng 8 2019

b) \(a^6-b^3\)

\(=\left(a^2\right)^3-b^3\)

\(=\left(a^2-b\right)\left(a^4+a^2b+b^2\right)\)

c) \(x^4-1\)

\(=\left(x^2\right)^2-1^2\)

\(=\left(x^2-1\right)\left(x^2+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)