K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2017

\(\left(a-b\right)-\left(a+b\right)+\left(2a-b\right)-\left(2a-3b\right)=0\)

biến đổi vế trái ta dược

=\(a-b-a-b+2a-b-2a+3b\)

\(=\left(a-a+2a-2a\right)+\left(-b-b-b+3b\right)\)

\(=-3b+3b\)

\(=0=vp\)

vậy đẳng thức được chứng minh

( a-b)-(a+b)+(2a-b)-(2a-3b)=0

<=> a-b-a-b+2a-b-2a+3b = 0

<=> 0=0

=> ĐPCM

P/s tham khảo nha

29 tháng 1 2016

Ta có :  (2a - b) - (a + b) + (a - b) - (2a - 3b)
            = 2a - b - a - b + a - b  -  2a + 3b  
            = (2a - 2a)+ (a - a) + (b - b - b + 3b) 
            =   0         +   0     +          0
            =                  0
Vậy đẳng thức (2a - b )- (a + b) + (a - b) - (2a - 3b) = 0

7 tháng 11 2021

\(\dfrac{2a-3b}{2a+3b}=\dfrac{2c-3d}{2c+3d}\Rightarrow\dfrac{2a-3d}{2c-3d}=\dfrac{2a+3b}{2c-3d}\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

7 tháng 11 2021

chả bt đúng hay sai đây ta???

24 tháng 2 2019

                           Giải

Ta có : \(\left(a-b\right)-\left(a+b\right)+\left(a-b\right)\)

\(=a-b-a-b+a-b\)( bỏ dấu ngoặc )

\(=\left(a-a+a\right)-\left(b+b+b\right)\)

\(=a-3b\)

Mà \(a-3b\ne2a-3b\)

\(\Rightarrow\left(a-b\right)-\left(a+b\right)+\left(a-b\right)\ne2a-3b\ne0\)

4 tháng 3 2020

\(\text{( a-b)-(a+b)+(2a-b)-(2a-3b)=0}\)

\(\Leftrightarrow\text{ a-b-a-b+2a-b-2a+3b = 0}\)

\(\Leftrightarrow\text{0=0}\)

\(\Rightarrow\text{ĐPCM}\)

\(\left(a+b-c\right)-\left(a-b+c\right)+\left(b+c-a\right)-\left(a-b-c\right)=2b\)

\(a+b-c-a+b-c+b+c-a-a+b+c=2b\)

\(-2a+4b-2c=2b\)

\(-2a+4b-2c-2b=0\)

\(-2a+2b-2c=0\)

\(đpcm\) 

10 tháng 10 2017

13 tháng 1 2021

Sửa lại đề bài là giải PT và biện luận nhé các bạn