Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a-b\right)-\left(a+b\right)+\left(2a-b\right)-\left(2a-3b\right)=0\)
biến đổi vế trái ta dược
=\(a-b-a-b+2a-b-2a+3b\)
\(=\left(a-a+2a-2a\right)+\left(-b-b-b+3b\right)\)
\(=-3b+3b\)
\(=0=vp\)
vậy đẳng thức được chứng minh
( a-b)-(a+b)+(2a-b)-(2a-3b)=0
<=> a-b-a-b+2a-b-2a+3b = 0
<=> 0=0
=> ĐPCM
P/s tham khảo nha
4)
a) x/5 = y/3
=> 3x = 5y
=> x/y = 5/3
=> x= 16 :(5+3) . 5 = 10 ; y = 16 - 10 =6
=> (x;y) thuộc {(10;6)}
\(\text{( a-b)-(a+b)+(2a-b)-(2a-3b)=0}\)
\(\Leftrightarrow\text{ a-b-a-b+2a-b-2a+3b = 0}\)
\(\Leftrightarrow\text{0=0}\)
\(\Rightarrow\text{ĐPCM}\)
\(\left(a+b-c\right)-\left(a-b+c\right)+\left(b+c-a\right)-\left(a-b-c\right)=2b\)
\(a+b-c-a+b-c+b+c-a-a+b+c=2b\)
\(-2a+4b-2c=2b\)
\(-2a+4b-2c-2b=0\)
\(-2a+2b-2c=0\)
\(đpcm\)
Vì 2a+3b chia hết cho 17=>9(2a+3b) chia hết cho17 => 18a+27b chia hết cho 17 <=>(17a+17b)+(a+10b) chia hết cho 17 mà 17a+17b chia hết cho 17 => a+10b chia het cho 17
a) Vế trái: Dùng quy tắc chuyển vế
a - b -a - b + 2a - b - 2a + 3b
= (a-a + 2a - 2a) + (-b - b - b + 3b) = 0
Mà Vế phải = 0
Suy ra hằng đẳng thức đúng
b) Tương tự: Vế trái
a + b - c - a +b - c + b +c - a - b + a + c
= (a - a -a + a) + (b + b + b - b ) + (-c -c +c + c) =2b
Mà vế phải = 2b
Suy ra hằng đẳng thức đúng :D
Giải
Ta có : \(\left(a-b\right)-\left(a+b\right)+\left(a-b\right)\)
\(=a-b-a-b+a-b\)( bỏ dấu ngoặc )
\(=\left(a-a+a\right)-\left(b+b+b\right)\)
\(=a-3b\)
Mà \(a-3b\ne2a-3b\)
\(\Rightarrow\left(a-b\right)-\left(a+b\right)+\left(a-b\right)\ne2a-3b\ne0\)