Chứng minh rằng:
a, ababab chia hét cho 7
b, aaabbb chia hết cho 37
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. vì 53! và 51! đều chứa thừa số 29 nên 53! và 51! đều chia hết cho 29 => 53! - 51! : hết cho 29
2. a. aaabbb = 111000a + 111b
vì 111000a và 111b đều chia hết cho 37 nên 111000a + 111b : hết cho 37 => aaabbb : hết cho 37
b. ababab = 10101 . ab mà 10101 : hết cho 7 => ababab : hết cho 7
a, aaabbb = 111000a + 111b đều chia hết cho 37 nên 111000a + 111b chia hết cho 37 . Suy ra aaabbb chia hết cho 37
1) cm: abab chia hết cho 101
Ta có : ab . 101 = ab . ( 100 + 1) = ab00 + ab = abab
=> abab chia hết cho 101 ( not 11)
2) ta có: aaabbb = aaa.1000+ bbb
= a.111.1000 + b.111
= a.37.3.1000+ b.37.3
= 37(3000a+ 3b) chia hết cho 37
3)
Ta có: abcabc
= abc. 1000 + abc
= abc. 1001
= abc. 143. 7
= abc . 11 . 13. 7 chia hết cho 7; 11; 13
4) Ta có: ababab = abab.100+ ab
= (ab.100 + ab) .100+ab
= ab.10000+ ab.100 + ab
= ab . 10101
=> ababab chia hết cho 10101
5)
abab - baba = a .1000 + b.100 + a.10 + b - (b .1000 + a.100 + b.10 + a)
= a .1000 + b.100 + a.10 + b - b .1000 - a.100 - b.10 - a
= a . 909 + b . (-909)
= a . 909 - b . 909
= a . 9 . 101 - b . 9 . 101
= 9 . (a . 101 - b . 101) ⋮ 9
a) Ta có: abba = a . 1000 + b . 100 + b . 10 + a
= 1001a + 101b
= a . 91 . 11 + b . 11 . 10
= 11 . (a . 91 + b . 10) ⋮ 11
b) Ta có: aaabbb = a . 100000 + a . 10000 + a . 1000 + b . 100 + b . 10 + b
= a . 111000 + b . 111
= a . 37 . 3000 + b . 37 . 3
= 37 . (a . 3000 + b . 3) ⋮ 37
c) Ta có: ababab = a . 100000 + b . 10000 + a . 1000 + b . 100 + a . 10 + b
= a . 101010 + b . 10101
= a . 14430 . 7 + b . 1443 . 7
= 7 . (a . 14430 + b. 1443) ⋮ 7
d) Ta có: abab - baba = a .1000 + b.100 + a.10 + b - (b .1000 + a.100 + b.10 + a)
= a .1000 + b.100 + a.10 + b - b .1000 - a.100 - b.10 - a
= a . 909 + b . (-909)
= a . 909 - b . 909
= a . 9 . 101 - b . 9 . 101
= 9 . (a . 101 - b . 101) ⋮ 9
a) Ta có: abba = a . 1000 + b . 100 + b . 10 + a
= 1001a + 101b
= a . 91 . 11 + b . 11 . 10
= 11 . (a . 91 + b . 10) 11
b) Ta có: aaabbb = a . 100000 + a . 10000 + a . 1000 + b . 100 + b . 10 + b
= a . 111000 + b . 111
= a . 37 . 3000 + b . 37 . 3
= 37 . (a . 3000 + b . 3) 37
c) Ta có: ababab = a . 100000 + b . 10000 + a . 1000 + b . 100 + a . 10 + b
= a . 101010 + b . 10101
= a . 14430 . 7 + b . 1443 . 7
= 7 . (a . 14430 + b. 1443) 7
d) Ta có: abab - baba = a .1000 + b.100 + a.10 + b - (b .1000 + a.100 + b.10 + a)
= a .1000 + b.100 + a.10 + b - b .1000 - a.100 - b.10 - a
= a . 909 + b . (-909)
= a . 909 - b . 909
= a . 9 . 101 - b . 9 . 101
= 9 . (a . 101 - b . 101) 9
a)
abba=a.1000+b.100+b.10+a
=1001a +101b
=a.91.11+b.11.10
=11.(a.91 +b.10)
vì 11⋮ 11 => 11.(a.91+b.10)
ĐPCM
Ta có aaabbb = 1000a + 100a + 10a + 100b + 10b + b = 1100a + 111b.
Ta biểu diễn 1100a + 111b dưới dạng 37k + r, trong đó k là một số nguyên và r là số dư.
1100a + 111b = 37(30a + 3b) + (10a + b).
Vì (10a + b) là số dư khi chia cho 37, nên ta cần chứng minh rằng (10a + b) chia hết cho 37.
Ta biểu diễn 10a + b dưới dạng 37n + p, trong đó n là một số nguyên và p là số dư.
CM : A = \(\overline{aaabbb}\) ⋮ 37
A = \(\overline{aaa}\) \(\times\) 1000 + \(\overline{bbb}\)
A = \(a\times\)111\(\times\)1000 + \(b\times\)111
A = 111\(\times\)(\(a\times\)1000+\(b\))
A = 37\(\times\)3\(\times\)(\(a\)\(\times\)1000+\(b\))
Vì 37 ⋮ 37 ⇒ 37 \(\times\)3(\(a\times\)1000+ \(b\)) ⋮ 37 ⇔ A = \(\overline{aaabbb}\)⋮37(đpcm)
Xét abba
abba = 1001a + 110b = 11(91a + 10b) chia hết cho 11
Xét aaabbb:
aaabbb = 111000a + 111b = 37(3000a + 3) chia hết cho 37
Xét ababab
ababab = 101010a + 10101b = 7(14430a + 1443b) chia hết cho 7
Xét abab - baba
abab - baba = 1010a + 101b - 1010b - 101a = (1010a - 101a) - (1010b - 101b) = 909a - 909b = 909(a - b) chia hết cho 9
aaabbb=aaa×1000+bbb=111×(1000a+b)=3×37×(1000a+b)
Vì 37 chia hết cho 37 nên aaabbb chia hết cho 37
Thanks nha nhưng tôi nghĩ thế này : aaabbb = a.100000 + a.10000 + a.1000 + b.100 + b.10 + b.1
aaabbb = a.( 100000 + 10000 + 1000) + b. ( 100 + 10 + 1 )
aaabbb = a.111000 + b.111
aaabbb = a.3000.37 + b.3.37
Vì 37 chia hết cho 37 nên nhân với số nào cũng chia hết cho 37 suy ra aaabbb chia hết cho 37
ababab = ab.101010=ab.7.14430 chia hết cho 7 (trong tích có 1 thừa số chia hết cho 7)
=> ababab chia hết cho 7(đpcm)