Cho tam giác ABC O nằm trong tam giác các tia AO BO CO cắt BC CA AB tại P Q R cmr
\(\frac{OA}{OP}.\frac{OB}{OQ}.\frac{OC}{ỎR}\ge8\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt \(S_{BOC}=S_1;S_{AOC}=S_2;S_{AOB}=S_3;S_{ABC}=S\)
Ta có \(\dfrac{OA}{OP}=\dfrac{S_{AOB}}{S_{POB}}=\dfrac{S_{AOC}}{S_{POC}}=\dfrac{S_{AOB}+S_{AOC}}{S_{COB}}=\dfrac{S_2+S_3}{S_1}\)
Tương tự:\(\dfrac{OB}{OQ}=\dfrac{S_3+S_1}{S_2};\dfrac{OC}{OR}=\dfrac{S_1+S_2}{S_3}\)
\(\Rightarrow\dfrac{OA}{OP}.\dfrac{OB}{OQ}.\dfrac{OC}{OR}=\dfrac{\left(S_1+S_2\right)\left(S_2+S_3\right)\left(S_3+S_1\right)}{S_1.S_2.S_3}\ge\)
\(\ge\dfrac{2\sqrt{S_1.S_2}.2\sqrt{S_2.S_3}.2\sqrt{S_3.S_1}}{S_1.S_2.S_3}=8\)
Dấu "=" xảy ra \(\Leftrightarrow S_1=S_2=S_3\Leftrightarrow\) O là giao điểm ba đường trung tuyến tam giác ABC