K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2017

A B C O P Q R H K

vì các đoạn thẳng trong bài hiển nhiên phải dương nên

áp dụng BĐT cauchy cho 3 số thực dương:

\(\sqrt{\frac{OA}{OP}}+\sqrt{\frac{OB}{OQ}}+\sqrt{\frac{OC}{OR}}\ge3\sqrt[3]{\sqrt{\frac{OA}{OP}.\frac{OB}{OQ}.\frac{OC}{OR}}}\)(1)

xét tích \(\frac{OA}{OP}.\frac{OB}{OQ}.\frac{OC}{OR}=\left(\frac{AP}{OP}-1\right)\left(\frac{BQ}{OQ}-1\right)\left(\frac{CR}{OR}-1\right)\)(2)

áp dụng hệ quả định lý tales:OK//AH(cùng vuông góc với BC)

\(\rightarrow\frac{AP}{OP}=\frac{AH}{OK}=\frac{S_{ABC}}{S_{BOC}}\)(2 tam giác chung cạnh đáy)

làm tương tự :\(\frac{BQ}{OQ}=\frac{S_{ABC}}{S_{AOC}}\);\(\frac{CR}{OR}=\frac{S_{ABC}}{S_{AOB}}\)

thế vào (2): \(\left(\frac{S_{ABC}}{S_{BOC}}-1\right)\left(\frac{S_{ABC}}{S_{AOC}}-1\right)\left(\frac{S_{ABC}}{S_{AOB}}-1\right)=\frac{\left(S_{AOB}+S_{AOC}\right)\left(S_{AOB}+S_{BOC}\right)\left(S_{AOC}+S_{BOC}\right)}{S_{AOB}.S_{BOC}.S_{AOC}}\)

để biểu thực gọn hơn ta đặt \(\left\{\begin{matrix}S_{AOB}=x\\S_{AOC}=y\\S_{BOC}=z\end{matrix}\right.\),biểu thức trở thành

\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)

áp dụng BĐT cauchy cho 2 số dương:\(\left\{\begin{matrix}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ac}\end{matrix}\right.\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\ge8\)(3)

từ (1),(2) và (3):\(\sqrt{\frac{OA}{OP}}+\sqrt{\frac{OB}{OQ}}+\sqrt{\frac{OC}{OR}}\ge3\sqrt[3]{\sqrt{8}}=3\sqrt[3]{\left(\sqrt{2}\right)^3}=3\sqrt{2}\)

dấu = xảy ra khi:\(\left\{\begin{matrix}\frac{OA}{OP}=\frac{OB}{OQ}=\frac{OC}{OR}\\S_{AOB}=S_{BOC}=S_{COA}\end{matrix}\right.\)chứng tỏ O là trọng tâm của tam giác ABC

13 tháng 2 2017

thanks

25 tháng 7 2018

B A C O R Q P

Đặt \(S_{AOC}=x^2;S_{BOC}=y^2;S_{AOB}=z^2\) \(\left(x,y,z>0\right)\)

* Ta thấy tam giác AOB và BOP có chung đường cao kẻ từ B

\(\Rightarrow\dfrac{S_{AOB}}{S_{BOP}}=\dfrac{OA}{OP}\). Tương tự \(\dfrac{S_{AOC}}{S_{COP}}=\dfrac{OA}{OP}\)

\(\Rightarrow\dfrac{OA}{OP}=\dfrac{S_{AOB}}{S_{BOP}}=\dfrac{S_{AOC}}{S_{COP}}=\dfrac{S_{AOB}+S_{AOC}}{S_{BOP}+S_{COP}}=\dfrac{x^2+z^2}{y^2}\)

Tương tự \(\dfrac{OB}{OQ}=\dfrac{y^2+z^2}{x^2};\dfrac{OC}{OR}=\dfrac{x^2+y^2}{z^2}\)

* Áp dụng BĐT cau-chy ta có

\(\dfrac{x^2}{y^2}+\dfrac{z^2}{y^2}\ge2\sqrt{\dfrac{x^2z^2}{y^4}}=\dfrac{2xz}{y^2}\) .

Tương tự \(\dfrac{y^2+z^2}{x^2}\ge\dfrac{2yz}{x^2}\) ; \(\dfrac{x^2+y^2}{z^2}\ge\dfrac{2xy}{z^2}\)

\(\Rightarrow A=\dfrac{x^2+z^2}{y^2}.\dfrac{y^2+z^2}{x^2}.\dfrac{x^2+y^2}{z^2}\ge8\)

\(\sqrt{\dfrac{OA}{OP}}+\sqrt{\dfrac{OB}{OQ}}+\sqrt{\dfrac{OC}{OR}}\ge3\sqrt[3]{\sqrt{A}}=3\sqrt{2}\) - đpcm

28 tháng 8 2016

a. Đặt \(S_{AOB}=c^2;S_{BOC}=a^2;S_{COA}=b^2\Rightarrow S_{ABC}=a^2+b^2+c^2\)

Ta có \(\frac{AM}{OM}=\frac{S_{ABC}}{S_{BOC}}=\frac{a^2+b^2+c^2}{a^2}=1+\frac{b^2+c^2}{a^2}\)

Vậy thì \(\frac{OA}{OM}=\frac{AM}{OM}-1=\frac{b^2+c^2}{a^2}\Rightarrow\sqrt{\frac{OA}{OM}}=\sqrt{\frac{b^2+c^2}{a^2}}\ge\frac{1}{\sqrt{2}}\left(\frac{b}{a}+\frac{a}{b}\right)\)

Tương tự, ta có: \(\sqrt{\frac{OA}{OM}}+\sqrt{\frac{OB}{ON}}+\sqrt{\frac{OC}{OP}}\ge\frac{1}{\sqrt{2}}\left(\frac{a}{b}+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}\right)\ge\frac{1}{\sqrt{2}}.6=3\sqrt{2}\)

25 tháng 10 2020

Hình vẽ:

Violympic toán 9

25 tháng 10 2020

Nguyễn Việt Lâm Akai Haruma giúp em với ạ.

16 tháng 9 2016

B C D E F A O

Đặt \(S_{BOC}=x^2,S_{AOC}=y^2,S_{AOB}=z^2\) \(\Rightarrow S_{ABC}=S_{BOC}+S_{AOC}+S_{AOB}=x^2+y^2+z^2\)

Ta có : \(\frac{AD}{OD}=\frac{S_{ABC}}{S_{BOC}}=\frac{AO+OD}{OD}=1+\frac{AO}{OD}=\frac{x^2+y^2+z^2}{x^2}=1+\frac{y^2+z^2}{x^2}\)

\(\Rightarrow\frac{AO}{OD}=\frac{y^2+z^2}{x^2}\Rightarrow\sqrt{\frac{AO}{OD}}=\sqrt{\frac{y^2+z^2}{x^2}}=\frac{\sqrt{y^2+z^2}}{x}\)

Tương tự ta có \(\sqrt{\frac{OB}{OE}}=\sqrt{\frac{x^2+z^2}{y^2}}=\frac{\sqrt{x^2+z^2}}{y};\sqrt{\frac{OC}{OF}}=\sqrt{\frac{x^2+y^2}{z^2}}=\frac{\sqrt{x^2+y^2}}{z}\)

\(\Rightarrow P=\frac{\sqrt{x^2+y^2}}{z}+\frac{\sqrt{y^2+z^2}}{x}+\frac{\sqrt{x^2+z^2}}{y}\ge\frac{x+y}{\sqrt{2}z}+\frac{y+z}{\sqrt{2}x}+\frac{x+z}{\sqrt{2}y}\)

           \(=\frac{1}{\sqrt{2}}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\right]\ge\frac{1}{\sqrt{2}}\left(2+2+2\right)=3\sqrt{2}\)

Dấu "=" xảy ra khi \(x=y=z\Rightarrow S_{BOC}=S_{AOC}=S_{AOB}=\frac{1}{3}S_{ABC}\)

\(\Rightarrow\frac{OD}{OA}=\frac{OE}{OB}=\frac{OF}{OC}=\frac{1}{3}\Rightarrow\)O là trọng tâm của tam giác ABC

Vậy \(MinP=3\sqrt{2}\) khi O là trọng tâm của tam giác ABC