K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2018

Lời giải:

A B C O P Q R Đặt \(S_{BOC}=S_1;S_{AOC}=S_2;S_{AOB}=S_3;S_{ABC}=S\)

Ta có \(\dfrac{OA}{OP}=\dfrac{S_{AOB}}{S_{POB}}=\dfrac{S_{AOC}}{S_{POC}}=\dfrac{S_{AOB}+S_{AOC}}{S_{COB}}=\dfrac{S_2+S_3}{S_1}\)

Tương tự:\(\dfrac{OB}{OQ}=\dfrac{S_3+S_1}{S_2};\dfrac{OC}{OR}=\dfrac{S_1+S_2}{S_3}\)

\(\Rightarrow\dfrac{OA}{OP}.\dfrac{OB}{OQ}.\dfrac{OC}{OR}=\dfrac{\left(S_1+S_2\right)\left(S_2+S_3\right)\left(S_3+S_1\right)}{S_1.S_2.S_3}\ge\)

\(\ge\dfrac{2\sqrt{S_1.S_2}.2\sqrt{S_2.S_3}.2\sqrt{S_3.S_1}}{S_1.S_2.S_3}=8\)

Dấu "=" xảy ra \(\Leftrightarrow S_1=S_2=S_3\Leftrightarrow\) O là giao điểm ba đường trung tuyến tam giác ABC

21 tháng 2 2020

Kẻ OM vuông góc với BC, kẻ  AI vuông góc với BC

\(\Rightarrow\)OM//AI

Xét tam giác AA'I có OM//AI(cmt)

\(\Rightarrow\)\(\frac{OM}{AI}=\frac{OA'}{AA'}\)(Theo hệ quả Ta-lét)

\(\Rightarrow\)\(\frac{OA'}{AA'}=\frac{\frac{1}{2}.OM.BC}{\frac{1}{2}.AI.BC}=\frac{S_{BDC}}{S_{ABC}}\)

Tương tự, ta có  \(\frac{DB'}{BB'}=\frac{S_{ADC}}{S_{ABC}}\)

               \(\frac{DC'}{CC'}=\frac{S_{ADB}}{S_{ABC}}\)

nên \(\Rightarrow\)đ/cm