chứng minh rằng
A,giá trị của biểu thức A=5+5\(^2\)+5\(^3\)+........+5\(^8\)là bội của 30
b,13=3+3\(^3\)+3\(^5\)+3\(^7\)+......+3\(^{^{ }29}\)là bội của 273
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^6\left(5+5^2\right)=30+5^2.30+...+5^6.30\)
\(=30\left(1+5^2+...+5^6\right)⋮30\Rightarrowđpcm\)
b) \(B=\left(3+3^3+3^5\right)+3^6\left(3+3^3+3^5\right)+...+3^{24}\left(3+3^3+3^5\right)=273+3^6.273+...+3^{24}.273\)
\(=273.\left(1+3^6+...+3^{24}\right)⋮273\Rightarrowđpcm\)
a: \(B=5\left(1+5+5^2+5^3\right)+5^5\left(1+5+5^2+5^3\right)\)
\(=156\cdot5\cdot\left(1+5^4\right)\)
\(=780\left(1+5^4\right)⋮30\)
b: \(B=\left(3+3^3+3^5\right)+...+3^{24}\left(3+3^2+3^5\right)\)
\(=273\cdot\left(1+...+3^{24}\right)⋮273\)
\(B=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{25}+3^{27}+3^{29}\right)\\ B=\left(3+3^3+3^5\right)+3^4\left(3+3^3+3^5\right)+...+3^{24}\left(3+3^3+3^5\right)\\ B=\left(3+3^3+3^5\right)\left(1+3^4+...+3^{24}\right)\\ B=273\left(1+3^4+...+3^{24}\right)⋮273\)
Vậy B là bội 273
a) \(A=5+5^2+5^3+...+5^8\)
\(=\left(5+5^2\right)+5^2\cdot\left(5+5^2\right)+...+5^6\cdot\left(5+5^2\right)\)
\(=\left(5+5^2\right)\cdot\left(1+5^2+...+5^6\right)\)
\(=30\cdot\left(1+5^2+...+5^6\right)\)chia hết cho 30.
b) \(B=3+3^3+3^5+3^7+...+3^{29}\)
\(=\left(3+3^3+3^5\right)+3^6\left(3+3^3+3^5\right)+...+3^{26}\cdot\left(3+3^3+3^5\right)\)
\(=\left(3+3^3+3^5\right)\cdot\left(1+3^6+...+3^{26}\right)\)
\(=273\cdot\left(1+3^6+3^{26}\right)\)chia hết cho 273.
a) A = 5 + 52 + 53 + ... + 58
\(\Rightarrow\) 2A = 52 + 53 + 54 + ... + 59
\(\Rightarrow\) 2A - A = (52 + 53 + 54 + ... + 59) - (5 + 52 + 53 + ... + 58)
\(\Rightarrow\) A = 59 - 5 = 1 953 125 - 5 = 1 953 120
Vì 1 953 120 \(⋮\) 30 nên A \(⋮\) 30
\(\Rightarrow\) ĐPCT