Cho tam giác ABC vuông tại A có AB = 30 cm, BC = 50 cm. Kẻ đường cao AH. Gọi P và Q lần lượt là hình chiếu H trên AB và AC.
a. Tính độ dài BH, CH.
b. Tính độ dài AH.
c. Tính số đo góc B và góc C.
d. Tính độ dài PQ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Áp dụng hệ thức giữa cạnh và đường cao trong các tam giác vuông
∆AHC và ∆AHB ta có:
AE.AC = A H 2 = AD.AB => ∆AHC ~ ∆AHB(c.g.c)
b. Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ∆ABC tính được AH = 3cm => DE = 3cm
Trong ∆AHB vuông ta có:
tan A B C ^ = A H H B => A B C ^ ≈ 56 0 , S A D E = 27 13 c m 2
\(a,AC=\sqrt{BC^2-AB^2}=3\sqrt{3}\left(cm\right)\\ \sin B=\dfrac{AC}{BC}=\dfrac{\sqrt{3}}{2}=\sin60^0\\ \Rightarrow\widehat{B}=60^0\\ \Rightarrow\widehat{C}=30^0\)
a: BC=BH+CH
=3,6+6,4=10(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH^2=3,6\cdot6,4=23,04\)
=>\(AH=\sqrt{23,04}=4,8\left(cm\right)\)
ΔAHC vuông tại H
=>\(AC^2=AH^2+HC^2\)
=>\(AC^2=4,8^2+6,4^2=64\)
=>AC=8(cm)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)
nên \(\widehat{B}\simeq53^0\)
ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ACB}\simeq90^0-53^0=37^0\)
b: Sửa đề; \(AM\cdot MB+AN\cdot NC=MN^2\)
Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
=>AMHN là hình chữ nhật
Xét ΔHAB vuông tại H có HM là đường cao
nên \(AM\cdot MB=HM^2\)
Xét ΔHAC vuông tại H có HN là đường cao
nên \(AN\cdot NC=HN^2\)
\(AM\cdot MB+AN\cdot NC=HM^2+HN^2=MN^2\)
c: AK\(\perp\)MN
=>\(\widehat{ANM}+\widehat{KAC}=90^0\)
mà \(\widehat{ANM}=\widehat{AHM}\)(AMHN là hình chữ nhật)
nên \(\widehat{AHM}+\widehat{KAC}=90^0\)
mà \(\widehat{AHM}=\widehat{B}\left(=90^0-\widehat{HAB}\right)\)
nên \(\widehat{B}+\widehat{KAC}=90^0\)
mà \(\widehat{B}+\widehat{KCA}=90^0\)
nên \(\widehat{KAC}=\widehat{KCA}\)
=>KA=KC
\(\widehat{KAC}+\widehat{KAB}=90^0\)
\(\widehat{KCA}+\widehat{KBA}=90^0\)
mà \(\widehat{KAC}=\widehat{KCA}\)
nên \(\widehat{KAB}=\widehat{KBA}\)
=>KA=KB
mà KA=KC
nên KB=KC
=>K là trung điểm của BC
b: Xét ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
hay \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Xét ΔADE vuông tại A và ΔACB vuông tại A có
\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Do đó: ΔADE\(\sim\)ΔACB
Suy ra: \(\widehat{ADE}=\widehat{ACB}\)
P/s : Bà chị có on thì tham khảo nhé "bí mật mong manh "
a/Áp dụng hệ thức lượng trong tam giác ta có:
HB=AB^2/BC=30^2:50=18cm
HC=BC-HB=50-18=32cm.
b/Ta có AH^2=HB.HC=18.32=576
-->AH=24cm
c/ Ta có sin B=AH/AB=24/30=4/5
=> góc B=53*
Góc C=90*-53*=37*
c)
Tg ABC (A=90)
SinB=AC/BC=4/5
=>B sấp xỉ 53^0
B+c=90
=>C=90-53 sấp xỉ 37 độ
d)
Xét tg APHQ
Có A=90(tg ABC vuông tại A)
P=90(HP vuông AB)
Q=90(HQ vuông góc AC
=> APHQ là hcn(dhnb)
=>AH=PQ=24(t/c hcn)
a) Xét tam giác ABC vuông tại A có:
A B 2 + A C 2 = B C 2
Tam giác ABC vuông tại A có AH là đường cao nên ta có:
Ta có:
BH + CH = BC ⇒ CH = BC - BH = 5 - 9/5 = 16/5 (cm)
a, \(BC=BH+HC=10\left(cm\right)\)
Áp dụng HTL: \(\left\{{}\begin{matrix}AH=\sqrt{BH\cdot HC}=4,8\left(cm\right)\\AB=\sqrt{BH\cdot BC}=6\left(cm\right)\end{matrix}\right.\)
\(\sin HCA=\dfrac{AB}{BC}=\dfrac{3}{5}\approx\sin37^0\\ \Rightarrow\widehat{HCA}\approx37^0\)