Chứng minh:
2 × abc chia hết cho 18, biết a+b+c chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(\overline{aba}=101.a+10b=98a+3a+7b+3b=\)
\(=\left(98a+7b\right)+3\left(a+b\right)\)
\(98a+7b⋮7;\left(a+b\right)⋮7\Rightarrow3\left(a+b\right)⋮7\)
\(\Rightarrow\overline{abc}=\left(98a+7b\right)+3\left(a+b\right)⋮7\)
b/ xem lại đề bài
Bài 2:
\(x^5=x^3\)
\(\Rightarrow x^5-x^3=0\)
\(\Rightarrow x^3\left(x^2-1\right)=0\)
\(\Rightarrow x^3=0\) hoặc \(x^2-1=0\)
+) \(x^3=0\Rightarrow x=0\)
+) \(x^2-1=0\Rightarrow x^2=1\Rightarrow x=1\) hoặc \(x=-1\)
Vậy \(x\in\left\{0;1;-1\right\}\)
6 = 2.3
Vì a + b + c \(⋮\)27
=> a + b + c \(⋮\)3
mà abc \(⋮\)2
=> abc \(⋮\)6
Study well
mk cung dang mac bai nay nen mong nhieu bn giup do chi nha !
1)
a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)
Vì \(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)
\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)
\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)
\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)
Vì \(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)
Vì ( a + b + c ) \(⋮\)9 nên abc \(⋮\)9
Mà 9 x 2 = 18 \(⋮\)18
=> 2 x abc \(⋮\)18 ( đpcm )