Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4: b) Vì n(n+1)(n+2) là tích của 3 số tự nhiên liên tiếp.
=> Tồn tại 1 số chia hết cho 2.
Tồn tại 1 số chia hết cho 3.
=> n(n+1)(n+2) chia hết cho cả 2 và 3.
c) Ta có: n(n+1)(2n+1)=n(n+1)[(n+2)+(n-1)]
=n(n+1)(n+2)+n(n+1)(n-1)
Nhận thấy: n(n+1)(n+2) và n(n+1)(n-1) là tích của 3 số tự nhiên liên tiếp
=>Tồn tại 1 số chia hết cho 2.
Tồn tại 1 số chia hết cho 3.
=> n(n+1)(2n+1) chia hết cho 2 và 3.
bài 3 nah không biết đúng hông nữa
n=20a20a20a=20a20a.1000+20a=(20a.1000+20a).1000+20a=1001.20a.1000+20a
theo đề bài n chia hết cho 7,mà 1001 chia hết cho 7 nên 20a chia hết cho 7
ta có 20a = 196+(4+a),chia hết cho 7 nên 4 + a chia hết cho 7 .Vậy a = 3
a/
\(\overline{aba}=101.a+10b=98a+3a+7b+3b=\)
\(=\left(98a+7b\right)+3\left(a+b\right)\)
\(98a+7b⋮7;\left(a+b\right)⋮7\Rightarrow3\left(a+b\right)⋮7\)
\(\Rightarrow\overline{abc}=\left(98a+7b\right)+3\left(a+b\right)⋮7\)
b/ xem lại đề bài
abc = 100a + 10b + c mà x ≥1và x + y + z = 7
=> 100(a + b + c) = 100a + 100b + 100c = 700
=> abc = 100a + 10b + c = 700 - 90b - 99c = 700 - 91b - 98c + b - c = 7(100 - 13b - 14c) + (b - c) chia hết cho 7
=> b - c chia hết cho 7 nhưng b,c là 2 chữ số thỏa mãn :0
≤b + c < a + b + c = 7 => 0≤b+c≤6
=> b - c chia hết cho 7 chỉ khi b - c = 0 <=> b = c (đpcm)
abc = 100a + 10b + c mà x ≥1và x + y + z = 7
=> 100(a + b + c) = 100a + 100b + 100c = 700
=> abc = 100a + 10b + c = 700 - 90b - 99c = 700 - 91b - 98c + b - c = 7(100 - 13b - 14c) + (b - c) chia hết cho 7
=> b - c chia hết cho 7 nhưng b,c là 2 chữ số thỏa mãn :0 ≤b + c < a + b + c = 7 => 0≤b+c≤6
=> b - c chia hết cho 7 chỉ khi b - c = 0 <=> b = c (đpcm)
Ta có \(\overline{abc}=100a+10b+c⋮7\)
Do \(a+b+c⋮7\Rightarrow100a+100b+100c⋮7\)
\(\Rightarrow\left(100a+10b+c\right)+90b+99c⋮7\)
\(\Rightarrow90b+99c⋮7\Rightarrow9\left(10b+11c\right)⋮7\)
\(\Rightarrow10b+11c⋮7\Rightarrow\left(7b+14c\right)+\left(3b-3c\right)⋮7\)
\(\Rightarrow b-c⋮7\) với mọi b, c thỏa mãn điều kiện của đề bài.
Vậy thì b - c = 0 hay b = c.