So sánh:
a,2^10 và 3^12
b,33^52 và 44^39
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(33^{52}=\left(33^4\right)^{13}=\left[\left(3.11\right)^4\right]^{13}=\left(3^4.11^4\right)^{13}=\left(11^3.891\right)^{13}\)
\(44^{39}=\left(44^3\right)^{13}=\left[\left(11.4\right)^3\right]^{13}=\left(11^3.4^3\right)^{13}=\left(11^3.64\right)^{13}\)
Do 891 > 64 => 33^52 > 44^39
\(3^{-200}=\left(3^{-2}\right)^{100}=\left(\frac{1}{9}\right)^{100}\)
\(2^{-300}=\left(2^{-3}\right)^{100}=\left(\frac{1}{8}\right)^{100}\)
\(\frac{1}{9}< \frac{1}{8}\Rightarrow\left(\frac{1}{9}\right)^{100}< \left(\frac{1}{8}\right)^{100}\Rightarrow3^{-200}< 2^{-300}\)
\(33^{52}=\left(33^4\right)^{13}\)
\(44^{39}=\left(44^3\right)^{13}\)
\(33^4=\left(33^{\frac{4}{3}}\right)^3\approx106^3\)
\(106^3>44^3\Rightarrow\left(33^4\right)^{13}> \left(44^3\right)^{13}\Rightarrow33^{52}>44^{39}\)
a) Ta có:
\(\begin{array}{l}3,5{\rm{ }}:{\rm{ }}\left( { - 5,25} \right) = \frac{{3,5}}{{ - 5,25}} = \frac{{350}}{{ - 525}} = \frac{{350:( - 175)}}{{( - 525):( - 175}} = \frac{{ - 2}}{3};\\( - 8):12 = \frac{{ - 8}}{{12}} = \frac{{( - 8):4}}{{12:4}} = \frac{{ - 2}}{3}\end{array}\)
Vậy từ các tỉ số 3,5 : (-5,25) và (-8) : 12 lập được tỉ lệ thức
b) Ta có:
\(\begin{array}{l}39\frac{3}{{10}}:52\frac{2}{5} = \frac{{393}}{{10}}:\frac{{262}}{5} = \frac{{393}}{{10}}.\frac{5}{{262}} = \frac{3}{4};\\7,5:10 = \frac{{7,5}}{{10}} = \frac{{75}}{{100}} = \frac{{75:25}}{{100:25}} = \frac{3}{4}\end{array}\)
Vậy từ các tỉ số \(39\frac{3}{{10}}:52\frac{2}{5}\) và 7,5 : 10 lập được tỉ lệ thức
c) Ta có:
\(\begin{array}{l}0,8{\rm{ }}:{\rm{ }}\left( { - 0,6} \right) = \frac{{0,8}}{{ - 0,6}} = \frac{8}{{ - 6}} = \frac{{8:( - 2)}}{{( - 6):( - 2)}} = \frac{{ - 4}}{3};\\1,2:( - 1,8) = \frac{{1,2}}{{ - 1,8}} = \frac{{12}}{{ - 18}} = \frac{{12:( - 6)}}{{( - 18):( - 6)}} = \frac{{ - 2}}{3}\end{array}\)
Vì \(\frac{{ - 4}}{3} \ne \frac{{ - 2}}{3}\) nên từ các tỉ số 0,8 : (-0,6) và 1,2 : (-1.8) không lập được tỉ lệ thức
a: Ta có: \(3^{2020}=3^{2018}\cdot3^2=3^{2018}\cdot9\)
mà 9<10
nên \(3^{2020}< 10\cdot3^{2018}\)
3^-200=3^(-2x100)
2^-300=2^(-3x100)
=2^-300>3^-200
chúc bn học tốt
a, 3^(−200) và 2^(−300)
Ta có :
3^(−200) =(3^−2)^100=(1/9)^100
2^(−300) =(2^−3)^100=(1/8)^100
Do 1/9<1/8 nên 3^(−200) < 2^(−300)
b, 33^52 và 44^39
Ta có :
33^52 = ( 33^4)^13
44^39 = ( 44^3 )^13
33^4 = ( 33 4/3 )^3 = 106^3
106^3 > 44^3 ⇒ ( 33^4)^13 > ( 44^3 )^13 ⇒ 33^52 >44^39
#Học tốt#
\(33^{52}=3^{52}.11^{52}=81^{13}.\left(11^4\right)13\)
\(44^{39}=4^{39}.11^{39}=64^{13}.\left(11^3\right)^{13}\)
Ta có\(11^4>11^3\)\(\Rightarrow11^{52}>11^{39}\)(1)
\(81^{13}>64^{13}\Rightarrow3^{52}>4^{39}\)(2)
Từ (1) và (2)\(\Rightarrow33^{52}>44^{39}\)
\(a,\) Ta có : \(\hept{\begin{cases}2^{10}=2^{10}\\3^{12}=3^{10}.3^2\end{cases}}\)
Vì \(3^{10}>2^{10}\Rightarrow2^{10}< 3^{10}.3^2\)
Hay \(2^{10}< 3^{12}\)
\(b,\) Ta có : \(\hept{\begin{cases}33^{52}=\left(33^4\right)^{13}=1185921^{13}\\44^{39}=\left(44^3\right)^{13}=85184^{13}\end{cases}}\)
Vì \(1185921^{13}>85184^{13}\)
Do đó : \(33^{52}>44^{39}\)