K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2017

2300 và 3300

Vì 2 < 3 Nên 2300 < 3300

Mình nghĩ là bn nghi nhầm nếu vậy mình sẽ sửa :

2300 và 3200

Ta có :

2300 = ( 23 )100 = 8100

3200 = ( 32 )100 = 9100

Vì 8100 < 9100 Nên 2300 < 3200

5 tháng 10 2017

 bài này rất dễ bạn nào không phải là học sinh giỏi cũng làm được đúng không. Mình biết đáp án bài này rồi. Nếu lướt qua mà thấy thì trả lời nha

14 tháng 8 2023

\(a,16^{19}=\left(2^4\right)^{19}=2^{76}\\ 8^{25}=\left(2^3\right)^{25}=2^{75}\)

Vì \(2^{76}>2^{75}=>16^{19}>8^{25}\)

b,\(3^{500}=\left(3^5\right)^{100}=243^{100}\)

Vì \(243^{100}>5^{100}=>3^{500}>5^{100}\)

14 tháng 8 2023

cứu

 

29 tháng 9 2023

\(a) 3^{200}=(3^2)^{100}=9^{100}\\2^{300}=(2^3)^{100}=8^{100}\)

Vì \(9^{100}>8^{100}\) nên \(3^{200}>2^{300}\)

\(b) 5^{40}=(5^4)^{10}=625^{10}\\3^{50}=(3^5)^{10}=243^{10}\)

Vì \(625^{10}>243^{10}\) nên \(5^{40}>3^{50}\)

#\(Toru\)

29 tháng 9 2023

a> \(3^{200}\) và \(2^{300}\)

Ta có:\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)

          \(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)

Vì 9>8 nên \(9^{100}>8^{100}\)

\(\Rightarrow\)\(3^{200}>2^{300}\)

b> \(5^{40}\) và \(3^{50}\)

Ta có:\(5^{40}=5^{4.10}=\left(5^4\right)^{10}=625^{10}\)

         \(3^{50}=3^{5.10}=\left(3^5\right)^{10}=243^{10}\)

Vì 625 > 243 nên \(625^{10}>243^{10}\)

\(\Rightarrow\)\(5^{40}>3^{50}\)

1 tháng 9 2023

Ta có: `8^111 =(2^3 )^111 =2^(3.111)=2^333`

`4^170 =(2^2 )^170 =2^(2.170)=2^340`

Vì `333<340=>8^111 <4^170`

Ta có: `3^300 =3^(3.100)=(3^3 )^100=27^100`

`5^200 =5^(2.100)=(5^2 )^100 =25^100`

Vì `27>25=>3^300 >5^200`

a: 8^111=2^333

4^170=(2^2)^170=2^340

mà 333<340

nên 8^111<4^170

b: 3^300=(3^3)^100=27^100

(5^200)=(5^2)^100=25^100

mà 27>25

nên 3^300>5^200

a: 99^20=9801^10<9999^10

b: 3^500=243^100

5^300=125^300

=>3^500>5^300

25 tháng 8 2021

a) 0,(26)<0,261

b) 0,15>0,14(9)

a: 0,(26)<0,261

b: 0,15>0,14(9)

a: m<n

=>2022m<2022n

b: m<n

=>-4m>-4n

17 tháng 4 2023

a, do m<n

=> 2022m<2022n

b,do m<n

=> -4m<-4n

 

  

b)

 

a = 25.26 261 = 25.(26 260 +1) = 25.10.2626 + 25 = 25.10.26.101 + 25

b = 26.25 251 = 26.(25 250 + 1) = 26.10.2525 + 26 = 26.10.25.101 + 26

Suy ra a < b

26 tháng 9 2021

a=25.26261=25.(26260+1) = 25.10.2626+25 = 25.10.26.101+25

b=26.25251=26.(25 250+1)=26.10.2525+26=26.10.25.101+26

Vì 26>25 nên b>a

15 tháng 8 2023

a) \(5^{48}=\left(5^4\right)^{12}=625^{12}\)

\(2^{108}=\left(2^9\right)^{12}=512^{12}\)

Do \(625>512\Rightarrow625^{12}>512^{12}\) \(\Rightarrow5^{48}>2^{108}\)  (1)

Lại có: \(108>105\Rightarrow2^{108}>2^{105}\)   (2)

Từ (1) và (2) \(\Rightarrow5^{48}>2^{105}\)

b) \(2^{50}=\left(2^5\right)^{10}=32^{10}\)

Do \(33>32\Rightarrow33^{10}>32^{10}\)

Vậy \(33^{10}>2^{50}\)

c) Do \(513>512\Rightarrow513^{100}>512^{100}\)   (1)

\(512^{100}=\left(2^9\right)^{100}=2^{900}\) \(=2^{10.90}=\left(2^{10}\right)^{90}=1024^{90}\) (2)

Do \(1024>1023\Rightarrow1024^{90}>1023^{90}\) (3)

Từ (1), (2) và (3) \(\Rightarrow513^{100}>1023^{90}\)

 

 

23 tháng 10 2021

\(a,2\sqrt{2}=\sqrt{8}< \sqrt{9}=3\\ \Leftrightarrow6+2\sqrt{2}< 3+6=9\\ b,\left(\sqrt{11}-\sqrt{3}\right)^2=14-2\sqrt{33}\\ 2^2=4=14-10\\ \left(2\sqrt{33}\right)^2=132>100=10^2\Leftrightarrow-2\sqrt{33}< -10\\ \Leftrightarrow\sqrt{11}-\sqrt{3}< 2\)

23 tháng 10 2021

a: \(2\sqrt{2}< 3\)

nên \(6+2\sqrt{2}< 9\)

Ta có: \(3^{200}=\left(3^2\right)^{100}=9^{100}\)

\(2^{300}=\left(2^3\right)^{100}=8^{100}\)

mà \(9^{100}>8^{100}\)

nên \(3^{200}>2^{300}\)

7 tháng 1 2021

3^200 và 2^300

<=> (3.2)^100 và (2.3)^100

<=> 6^100 và 6^100

vậy 3^200=2^300

chúc bạn hok tốt và nhớ tick cho mk nha