K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2017

\(2x^2+2y^2-4xy+2x-2y+4\)

\(=2\left(x-y\right)^2+2\left(x-y\right)+4\)

\(=2\left[\left(x-y\right)^2+2\left(x-y\right)\frac{1}{2}+\frac{1}{4}\right]+\frac{7}{2}\)

\(=2\left(x-y+\frac{1}{2}\right)^2+\frac{7}{2}\)

\(\Rightarrow A\ge\frac{7}{2}\)

Dấu = bn tự tính nhé

7 tháng 11 2018

a) \(A=\left(x+1\right)\left(2x-1\right)\)

\(A=2x^2+x-1\)

\(A=2\left(x^2+\frac{1}{2}x-\frac{1}{2}\right)\)

\(A=2\left[x^2+2\cdot x\cdot\frac{1}{4}+\left(\frac{1}{4}\right)^2-\frac{9}{16}\right]\)

\(A=2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]\)

\(A=2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\ge\frac{-9}{8}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x+\frac{1}{4}=0\Leftrightarrow x=\frac{-1}{4}\)

Vậy Amin = -9/8 khi và chỉ khi x = -1/4

b) \(B=4x^2-4xy+2y^2+1\)

\(B=\left(2x\right)^2-2\cdot2x\cdot y+y^2+y^2+1\)

\(B=\left(2x-y\right)^2+y^2+1\ge1\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y=0\\y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}\Rightarrow}}x=y=0\)

Vậy Bmin = 1 khi và chỉ khi x = y = 0

15 tháng 10 2018

a) \(x^3+x^2y-x^2z-xyz\)

\(=x^2\left(x+y\right)-xz\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xz\right)\)

\(=x\left(x+y\right)\left(x-z\right)\)

b) \(x^2-6x+9-9y^2\)

\(=\left(x^2-2\cdot x\cdot3+3^2\right)-\left(3y\right)^2\)

\(=\left(x-3\right)^2-\left(3y\right)^2\)

\(=\left(x-3-3y\right)\left(x-3+3y\right)\)

c) \(x^2+9x+20\)

\(=x^2+5x+4x+20\)

\(=x\left(x+5\right)+4\left(x+5\right)\)

\(=\left(x+5\right)\left(x+4\right)\)

d) \(x^4+4\)

\(=\left(x^2\right)^2+2\cdot x^2\cdot2+4-2\cdot x^2\cdot2\)

\(=\left(x^2+2\right)-\left(2x\right)^2\)

\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

15 tháng 10 2018

a/\(x^3+x^2y-x^2z-xyz\)

\(=\left(x^3-x^2y\right)+\left(x^2y-xyz\right)\)

\(=x^2\left(x-z\right)+xy\left(x-z\right)\)

\(=\left(x-z\right)\left(x^2+xy\right)\)

b/\(x^2-6x+9-9y^2\)

\(=\left(x^2-6x+9\right)-9y^2\)

\(=\left(x-3\right)^2-\left(3y\right)^2\)

\(=\left(x-3+3y\right)\left(x-3-3y\right)\)

c/\(x^2+9x+20\)

\(=x^2+4x+5x+20\)

\(=\left(x^2+4x\right)+\left(5x+20\right)\)

\(=x\left(x+4\right)+5\left(x+4\right)\)

\(=\left(x+5\right)\left(x+4\right)\)

d/\(x^4+4\)

\(=x^4+4x^2-4x^2+4\)

\(=\left(x^2+4x^2+4\right)-4x^2\)

\(=\left(x+2\right)^2-\left(2x\right)^2\)

\(=\left(x+2-2x\right)\left(x+2+2x\right)\)

17 tháng 10 2018

d) \(x^2-y^2-2x+2y\)

\(=\left(x^2-2x+1\right)-\left(y^2-2y+1\right)\)

\(=\left(x-1\right)^2-\left(y-1\right)^2\)

\(=\left(x-1-y+1\right)\left(x-1+y-1\right)\)

\(=\left(x-y\right)\left(x+y-2\right)\)

17 tháng 10 2018

\(4xy^2-12x^2y+8xy\)

\(=4xy\left(y-3x+2\right)\)

\(3x^2-6xy+3y^2-12z^2\)

\(=3.\left(x^2-2xy+y^2-4z^2\right)\)

\(=3.\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)

\(=3.\left(x-y-2z\right)\left(x-y+2z\right)\)

\(x^4y^4+4=\left[\left(x^2y^2\right)^2+2..x^2y^2.2+2^2\right]-\left(2xy\right)^2\)

\(=\left(x^2y^2+2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2y^2+2-2xy\right)\left(x^2y^2+2+2xy\right)\)

4 tháng 3 2020

a,5x+8=2x-7                         

5x+8-2x+7=0

<=>3x+15=0

<=>3x=-15

<=>x=-5

Vậy x=-5

   b,3.(x+2)=2.(x-1)

<=>3x+6=2x-1

<=>3x+6-2x+1=0

<=>x+7=0

<=>x=-7

Vậy x=-7

4 tháng 3 2020

a,5x+8=2x-7

   5x - 2x = -7 - 8

    3x        = -15

      x        = (-15) : 3

      x        = -5

Vậy x = -5

 b,3.(x+2)=2.(x-1)

    3x + 6 = 2x - 2

    3x - 2x= -2 - 6

       x     = -8

Vậy x = -8

# HOK TỐT #

3 tháng 1 2017

giúp mk vs các bn ui, mai mk nộp bài rùi, mk cần gấp lắm lắm,...giúp mk nha....

29 tháng 6 2019

I 2x-3 I = I x+1 I

2x-3 = x+1

x+1 - 2x+3=0

x (1-2) +1+3=0

-1x +4 =0

-1x      = 0-4

-1x      =-4

x          = -4 : -1

x         =4

Trả lời:

    \(\left|2x-3\right|=\left|x+1\right|\)

\(\Rightarrow2x-3=x+1\) hoặc   \(2x-3=-\left(x+1\right)\)

TH1:   \(2x-3=x+1\)

           \(2x-x=1+3\)

            \(x=4\)

TH2: \(2x-3=-\left(x+1\right)\)

         \(2x-3=-x-1\)

          \(2x+x=-1+3\)

          \(3x=2\)

          \(x=\frac{2}{3}\)

          Vậy \(x=4;x=\frac{2}{3}\)

           

15 tháng 7 2018

 2.I3x - 1I + 1 = 5
<=>2.I3x - 1I = 5-1
<=>2.I3x - 1I =4
<=>I3x - 1I=2
=>Có 2 trường hợp
3x-1=2 =>3x=3 =>x=1
3x-1=-2 =>3x=1 =>x=1/3
Vậy x có 2 giá trị thỏa mãn là 1 và 1/3

Học tốt ^-^

15 tháng 7 2018

Mơn bn nhìu ạ ~~~ Hok tốt nha~~~

30 tháng 4 2018

\(M=x^2+y^2-xy-2x-2y+2\)

\(\Leftrightarrow M=\left(\frac{1}{2}x^2-xy+\frac{1}{2}y^2\right)+\left(\frac{1}{2}x^2-2x+2\right)+\left(\frac{1}{2}y^2-2y+2\right)-2\)

\(\Leftrightarrow M=\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x-2\right)^2+\frac{1}{2}\left(y-2\right)^2-2\ge-2\)\(\forall\)\(x\)

"=" khi x=y=2

Vậy Min M là -2 khi x=y=2

30 tháng 4 2018

\(M=x^2+y^2-xy-2x-2y+2\)

\(4M=4x^2+4y^2-4xy-8x-8y+8\)

\(4M=\left(4x^2-4xy+y^2\right)+3y^2-8x-8y+8\)

\(4M=\left[\left(2x-y\right)^2-2\left(2x-y\right)\times2+4\right]+3y^2-12y+4\)

\(4M=\left(2x-y-2\right)^2+3\left(y^2-4y+4\right)-8\)

\(4M=\left(2x-y-2\right)^2+3\left(y-2\right)^2-8\)

\(\Rightarrow4M\ge-8\)

\(\Leftrightarrow M\ge-2\)

Dấu "=" xảy ra khi :