K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2019

I 2x-3 I = I x+1 I

2x-3 = x+1

x+1 - 2x+3=0

x (1-2) +1+3=0

-1x +4 =0

-1x      = 0-4

-1x      =-4

x          = -4 : -1

x         =4

Trả lời:

    \(\left|2x-3\right|=\left|x+1\right|\)

\(\Rightarrow2x-3=x+1\) hoặc   \(2x-3=-\left(x+1\right)\)

TH1:   \(2x-3=x+1\)

           \(2x-x=1+3\)

            \(x=4\)

TH2: \(2x-3=-\left(x+1\right)\)

         \(2x-3=-x-1\)

          \(2x+x=-1+3\)

          \(3x=2\)

          \(x=\frac{2}{3}\)

          Vậy \(x=4;x=\frac{2}{3}\)

           

16 tháng 8 2020

Bài làm:

a) \(\left|\frac{1}{2}x-\frac{5}{2}\right|-1=-\frac{1}{2}\)

\(\Leftrightarrow\left|\frac{1}{2}x-\frac{5}{2}\right|=\frac{1}{2}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x-\frac{5}{2}=\frac{1}{2}\\\frac{1}{2}x-\frac{5}{2}=-\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x=3\\\frac{1}{2}x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=6\\x=4\end{cases}}\)

+ Nếu x = 6

\(\left|12-\frac{1}{3}y\right|=\frac{5}{6}\)

\(\Leftrightarrow\orbr{\begin{cases}12-\frac{1}{3}y=\frac{5}{6}\\12-\frac{1}{3}y=-\frac{5}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}y=\frac{67}{6}\\\frac{1}{3}y=\frac{77}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}y=\frac{67}{2}\\y=\frac{77}{2}\end{cases}}\)

+ Nếu x = 4

\(\left|8-\frac{1}{3}y\right|=\frac{5}{6}\)

\(\Leftrightarrow\orbr{\begin{cases}8-\frac{1}{3}y=\frac{5}{6}\\8-\frac{1}{3}y=-\frac{5}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}y=\frac{43}{6}\\\frac{1}{3}y=\frac{53}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}y=\frac{43}{2}\\y=\frac{53}{2}\end{cases}}\)

Vậy ta có 4 cặp số (x;y) thỏa mãn: \(\left(6;\frac{67}{2}\right);\left(6;\frac{77}{2}\right);\left(4;\frac{43}{2}\right);\left(4;\frac{53}{2}\right)\)

16 tháng 8 2020

b) \(\frac{3}{2}x-\frac{1}{2}\left(x-\frac{2}{3}\right)=\frac{5}{3}\)

\(\Leftrightarrow\frac{3}{2}x-\frac{1}{2}x+\frac{1}{3}=\frac{5}{3}\)

\(\Leftrightarrow x=\frac{4}{3}\)

Thay vào ta được:

\(\frac{2.\frac{4}{3}+y}{\frac{4}{3}-2y}=\frac{5}{4}\)

\(\Leftrightarrow\frac{32}{3}+4y=\frac{20}{3}-10y\)

\(\Leftrightarrow14y=-4\)

\(\Rightarrow y=-\frac{2}{7}\)

Vậy ta có 1 cặp số (x;y) thỏa mãn: \(\left(\frac{4}{3};-\frac{2}{7}\right)\)

1 tháng 7 2017

Ta có : (2x + 1)4 = (2x + 1)6

=> (2x + 1)- (2x + 1)= 0

<=> (2x + 1)4[1 - (2x + 1)2] = 0

\(\Leftrightarrow\orbr{\begin{cases}\left(2x+1\right)^4=0\\1-\left(2x+1\right)^2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\\left(2x+1\right)^2=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x=-1\\\left(2x+1\right)=1;-1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\2x=0;-2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=0;-1\end{cases}}\)

Vậy x thuộc \(-\frac{1}{2};0;-1\)

1 tháng 7 2017

hk hỉu j hết bn ạ

13 tháng 10 2018

a) 5x.(x+3/4) = 0

=> x = 0

x+3/4 = 0 => x = -3/4

b) \(\frac{x+7}{2010}+\frac{x+6}{2011}=\frac{x+5}{2012}+\frac{x+4}{2013}.\)

\(\Rightarrow\frac{x+7}{2010}+\frac{x+6}{2011}-\frac{x+5}{2012}-\frac{x+4}{2013}=0\)

\(\frac{x+7}{2010}+1+\frac{x+6}{2011}+1-\frac{x+5}{2012}-1-\frac{x+4}{2013}-1=0\)

\(\left(\frac{x+7}{2010}+1\right)+\left(\frac{x+6}{2011}+1\right)-\left(\frac{x+5}{2012}+1\right)-\left(\frac{x+4}{2013}+1\right)=0\)

\(\frac{x+2017}{2010}+\frac{x+2017}{2011}-\frac{x+2017}{2012}-\frac{x+2017}{2013}=0\)

\(\left(x+2017\right).\left(\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}\right)=0\)

=> x + 2017 = 0

x = -2017

13 tháng 10 2018

a) để 2x - 3 > 0

=> 2x > 3

x > 3/2

b) 13-5x < 0

=> 5x < 13

x < 13/5

c) \(\frac{x+3}{2x-1}>0\)

=> x + 3 > 0

x > -3

d) \(\frac{x+7}{x+3}=\frac{x+3+4}{x+3}=1+\frac{4}{x+3}\)

Để x+7/x+3 < 1

=> 1 + 4/x+3 < 1

=> 4/x+3 < 0

=> không tìm được x thỏa mãn điều kiện

20 tháng 9 2020

a) \(\left|2x-1\right|+\frac{1}{3}=0\)

\(\Leftrightarrow\left|2x-1\right|=-\frac{1}{3}\)

=> vô lý

=> PT vô nghiệm

b) \(\left|x+2\right|+\left|x-3\right|=0\)

\(\Leftrightarrow\left|x+2\right|=-\left|x-3\right|\)

Vì \(\hept{\begin{cases}\left|x+2\right|\ge0\\-\left|x-3\right|\le0\end{cases}\left(\forall x\right)}\) nên dấu "=" xảy ra khi: 

\(\left|x+2\right|=-\left|x-3\right|=0\Rightarrow\hept{\begin{cases}x=-2\\x=3\end{cases}}\) (vô lý)

=> PT vô nghiệm