Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
a) \(\left|\frac{1}{2}x-\frac{5}{2}\right|-1=-\frac{1}{2}\)
\(\Leftrightarrow\left|\frac{1}{2}x-\frac{5}{2}\right|=\frac{1}{2}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x-\frac{5}{2}=\frac{1}{2}\\\frac{1}{2}x-\frac{5}{2}=-\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x=3\\\frac{1}{2}x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=6\\x=4\end{cases}}\)
+ Nếu x = 6
\(\left|12-\frac{1}{3}y\right|=\frac{5}{6}\)
\(\Leftrightarrow\orbr{\begin{cases}12-\frac{1}{3}y=\frac{5}{6}\\12-\frac{1}{3}y=-\frac{5}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}y=\frac{67}{6}\\\frac{1}{3}y=\frac{77}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}y=\frac{67}{2}\\y=\frac{77}{2}\end{cases}}\)
+ Nếu x = 4
\(\left|8-\frac{1}{3}y\right|=\frac{5}{6}\)
\(\Leftrightarrow\orbr{\begin{cases}8-\frac{1}{3}y=\frac{5}{6}\\8-\frac{1}{3}y=-\frac{5}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}y=\frac{43}{6}\\\frac{1}{3}y=\frac{53}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}y=\frac{43}{2}\\y=\frac{53}{2}\end{cases}}\)
Vậy ta có 4 cặp số (x;y) thỏa mãn: \(\left(6;\frac{67}{2}\right);\left(6;\frac{77}{2}\right);\left(4;\frac{43}{2}\right);\left(4;\frac{53}{2}\right)\)
b) \(\frac{3}{2}x-\frac{1}{2}\left(x-\frac{2}{3}\right)=\frac{5}{3}\)
\(\Leftrightarrow\frac{3}{2}x-\frac{1}{2}x+\frac{1}{3}=\frac{5}{3}\)
\(\Leftrightarrow x=\frac{4}{3}\)
Thay vào ta được:
\(\frac{2.\frac{4}{3}+y}{\frac{4}{3}-2y}=\frac{5}{4}\)
\(\Leftrightarrow\frac{32}{3}+4y=\frac{20}{3}-10y\)
\(\Leftrightarrow14y=-4\)
\(\Rightarrow y=-\frac{2}{7}\)
Vậy ta có 1 cặp số (x;y) thỏa mãn: \(\left(\frac{4}{3};-\frac{2}{7}\right)\)
Ta có : (2x + 1)4 = (2x + 1)6
=> (2x + 1)4 - (2x + 1)6 = 0
<=> (2x + 1)4[1 - (2x + 1)2] = 0
\(\Leftrightarrow\orbr{\begin{cases}\left(2x+1\right)^4=0\\1-\left(2x+1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\\left(2x+1\right)^2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=-1\\\left(2x+1\right)=1;-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\2x=0;-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=0;-1\end{cases}}\)
Vậy x thuộc \(-\frac{1}{2};0;-1\)
a) 5x.(x+3/4) = 0
=> x = 0
x+3/4 = 0 => x = -3/4
b) \(\frac{x+7}{2010}+\frac{x+6}{2011}=\frac{x+5}{2012}+\frac{x+4}{2013}.\)
\(\Rightarrow\frac{x+7}{2010}+\frac{x+6}{2011}-\frac{x+5}{2012}-\frac{x+4}{2013}=0\)
\(\frac{x+7}{2010}+1+\frac{x+6}{2011}+1-\frac{x+5}{2012}-1-\frac{x+4}{2013}-1=0\)
\(\left(\frac{x+7}{2010}+1\right)+\left(\frac{x+6}{2011}+1\right)-\left(\frac{x+5}{2012}+1\right)-\left(\frac{x+4}{2013}+1\right)=0\)
\(\frac{x+2017}{2010}+\frac{x+2017}{2011}-\frac{x+2017}{2012}-\frac{x+2017}{2013}=0\)
\(\left(x+2017\right).\left(\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}\right)=0\)
=> x + 2017 = 0
x = -2017
a) để 2x - 3 > 0
=> 2x > 3
x > 3/2
b) 13-5x < 0
=> 5x < 13
x < 13/5
c) \(\frac{x+3}{2x-1}>0\)
=> x + 3 > 0
x > -3
d) \(\frac{x+7}{x+3}=\frac{x+3+4}{x+3}=1+\frac{4}{x+3}\)
Để x+7/x+3 < 1
=> 1 + 4/x+3 < 1
=> 4/x+3 < 0
=> không tìm được x thỏa mãn điều kiện
a) \(\left|2x-1\right|+\frac{1}{3}=0\)
\(\Leftrightarrow\left|2x-1\right|=-\frac{1}{3}\)
=> vô lý
=> PT vô nghiệm
b) \(\left|x+2\right|+\left|x-3\right|=0\)
\(\Leftrightarrow\left|x+2\right|=-\left|x-3\right|\)
Vì \(\hept{\begin{cases}\left|x+2\right|\ge0\\-\left|x-3\right|\le0\end{cases}\left(\forall x\right)}\) nên dấu "=" xảy ra khi:
\(\left|x+2\right|=-\left|x-3\right|=0\Rightarrow\hept{\begin{cases}x=-2\\x=3\end{cases}}\) (vô lý)
=> PT vô nghiệm
I 2x-3 I = I x+1 I
2x-3 = x+1
x+1 - 2x+3=0
x (1-2) +1+3=0
-1x +4 =0
-1x = 0-4
-1x =-4
x = -4 : -1
x =4
Trả lời:
\(\left|2x-3\right|=\left|x+1\right|\)
\(\Rightarrow2x-3=x+1\) hoặc \(2x-3=-\left(x+1\right)\)
TH1: \(2x-3=x+1\)
\(2x-x=1+3\)
\(x=4\)
TH2: \(2x-3=-\left(x+1\right)\)
\(2x-3=-x-1\)
\(2x+x=-1+3\)
\(3x=2\)
\(x=\frac{2}{3}\)
Vậy \(x=4;x=\frac{2}{3}\)