tìm 2 số tự nhiên x và y biết xy + 5y + 5x = 92
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xy + 5y + 5x = 92
xy + 5y + 5x + 5 . 5 - 25 = 92
y ( x + 5 ) + 5 ( x + 5 ) - 25 = 92
( x + 5 ) . ( y + 5 ) = 92 + 25 = 117
=> x + 5 , y + 5 € Ư (117 )
/Tự làm/
#Tề _ Thiên
xy + 5y + 5x = 92 \(\Rightarrow\)( x + 5 )( y + 2 ) = 102
Nên x + 5 , y + 2 là ước của 120. Mà 102 = 2.3.17
Do đó :
x + 5 | 1 | 2 | 3 | 6 | 17 | 34 | 51 | 102 |
y + 2 | 102 | 51 | 34 | 17 | 6 | 3 | 2 | 1 |
Vậy ( với x\(\ge\)5 ; y\(\ge\)2 )
x | 6 | 17 | 34 | 51 |
y | 17 | 6 | 3 | 2 |
1. xy + 5x + 5y = 92
=> (xy + 5x) + (5y + 25) = 92 + 25
=> x(y + 5) + 5(y + 5) = 117
=> (x + 5)(y + 5) = 117
=> x + 5 \(\in\)Ư(117) = {-1;1;-3;3;-9;9;-13;13;-39;39;-117;117}
Mà x >= 0 => x + 5 >= 5
=> x + 5 \(\in\){9;13;39;117}
Ta có bảng sau:
x + 5 | 9 | 13 | 39 | 117 |
x | 4 | 8 | 34 | 112 |
y + 5 | 13 | 9 | 3 | 1 |
y | 8 | 4 | -2 (loại) | -4 (loại) |
Vậy; (x;y) \(\in\){(4;8);(8;4)}
a/
\(xy-5x=5y\Rightarrow x\left(y-5\right)=5y\Rightarrow x=\frac{5y}{y-5}\)với \(y\ne5\)
\(x=\frac{5y-25+25}{y-5}=\frac{5\left(y-5\right)+25}{y-5}=5+\frac{25}{y-5}\)
Do x là số nguyên nên \(\frac{25}{y-5}\)phải là số nguyên hay y-5 phải là ước của 25
=> \(y-5\in\left\{-25;-5;-1;1;5;25\right\}\)\(\Rightarrow y\in\left\{-20;0;4;6;10;30\right\}\)
Thế y vào tìm x
Các câu còn lại làm tương tự
a/ xy=5x+5y
<=> xy-5x=5y <=> x(y-5)=5y => \(x=\frac{5y}{y-5}=\frac{5y-25+25}{y-5}=\frac{5\left(y-5\right)}{y-5}+\frac{25}{y-5}=5+\frac{25}{y-5}.\)
Như vậy, để x là số tự nhiên thì 25 phải chia hết cho (y-5)
=> \(\hept{\begin{cases}y-5=1\\y-5=5\\y-5=25\end{cases}=>\hept{\begin{cases}y=6;x=30\\y=10;x=10\\y=30;x=6\end{cases}}}\)
.
Các câu khác làm tương tự
a) xy + 4x = 35 + 5y
=> xy + 4x - 5y = 35
=> x(y + 4) - 5(y + 4) = 15
=> (x - 5)(y + 4) = 15
=> x - 5;y + 4 \(\in\)Ư(15) = {1; 3; 5; 15}
Lập bảng :
x - 5 | 1 | 3 | 5 | 15 |
y + 4 | 15 | 5 | 3 | 1 |
x | 6 | 8 | 10 | 20 |
y | 11 | 1 | -1(loại) | -3(loại) |
Vậy ...
b) 2|x| + y2 + y = 2x + 1
Ta có: 2x + 1 là số lẻ => 2|x| + y2 + y là số lẻ
Mà y2 + y = y(y + 1) là số chẵn => 2|x| là số lẻ
<=> 2|x| = 1 <=> 2|x| = 20 <=> |x| = 0 <=> x = 0
Với x = 0 => 20 + y2 + y = 2.0 + 1
=> 1 + y2 + y = 1
=> y(y + 1) = 0
=> \(\orbr{\begin{cases}y=0\\y+1=0\end{cases}}\)
=> \(\orbr{\begin{cases}y=0\\y=-1\end{cases}}\)
Do x; y \(\in\)N => x = y = 0 (tm)
xy + 5y + 5x = 92
y(x+5) + 5(x+5) - 25 = 92
y(x+5) + 5(x+5) = 92 + 25 = 117
(x+5)(y+5) = 117
=> x+5 \(\in\)Ư(117) = (-1;1;3;-3;9;-9;13;-13;39;-39;117;-117)
mà x > 0 => x+5 \(\ge\)5
=> x+5\(\in\)(9;13;39;117)
ta có bảng sau
VẬY (x;y) = (4;8) hoặc (8;4)