Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) 5x2 +5y2 +8xy + 2x-2y+2 = 0
(x2 +2x+1) + (y2 -2y+1) + (4x2 +8xy + 4y2) = 0
(x+1)2 + (y-1)2 +(2x+2y)2 = 0
=> (x+1)2 = 0 => x = -1
(y-1)2 = 0 => y = 1
(2x+2y)2 = 0
KL: x = -1; y = 1
a) 3x2 +5y2 = 345
=> x2 chia hết cho 5
=> x chia hết cho 5
đặt x = 5t=> 75t2+5y2 =345⇒15t2+y2 =69⇒y chia hết cho 3
đặt y = 3z => 15t2+9z2 =69
⇒5t2 +3z2 =23
...
\(x^2+xy-3y-5x+3=0\)(*)
\(\Leftrightarrow x^2+\left(y-5\right).x+3-3y=0\)
Coi đây là pt bậc 2 ẩn x
Ta có:
\(\Delta=\left(y-5\right)^2-4.1\left(3-3y\right)\\ =y^2-10y+25-12+12y\\ =y^2+2y+13\)
Để pt có nghiệm nguyên thì Δ là số chính phương
\(\text{Đặt}y^2+2y+13=k^2\left(k\in N\right)\\ \Rightarrow\left(y^2+2y+1\right)-k^2+12=0\\ \Rightarrow\left(y+1\right)^2-k^2=-12\\ \Rightarrow\left(y-k+1\right)\left(y+k+1\right)=-12\)
Vì y, k ∈ N\(\Rightarrow\left\{{}\begin{matrix}y-k+1,y+k+1\in Z\\y-k+1,y+k+1\inƯ\left(-12\right)\\y-k+1< y+k+1\end{matrix}\right.\)
Ta có bảng:
y-k+1 | -1 | -2 | -3 | -4 | -6 | -12 |
y+k+1 | 12 | 6 | 4 | 3 | 2 | 1 |
y | \(4,5\left(loại\right)\) | 1(tm) | -0,5(loại) | -1(tm) | -3(tm) | -6,5(loại) |
Với y=1 thay vào (*) ta tìm được \(\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Với y=-1 thay vào (*) ta không tìm được x nguyên
Với y=-3 thay vào (*) ta tìm được \(\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
Vậy \(\left(x,y\right)\in\left\{\left(0;1\right);\left(4;1\right);\left(2;-3\right);\left(6;-3\right)\right\}\)
a) Đặt \(\frac{x}{3}=\frac{y}{7}=k\)
\(\Rightarrow\)x = 3k ; y = 7k
xy = 84 hay 3k . 7k = 84
\(\Rightarrow\)21k2 = 84
\(\Rightarrow\)k2 = 4
\(\Rightarrow\)\(\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=6;y=14\\x=-6;y=-14\end{cases}}\)
\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{x}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{x}=\frac{\left(1+3y\right)+\left(1+7y\right)}{12+x}=\frac{2+10y}{12+x}=\frac{2.\left(1+5y\right)}{2.\frac{1}{2}.\left(12+x\right)}=\frac{1+5y}{\frac{1}{2}.\left(12+x\right)}\)
\(\Rightarrow5x=\frac{1}{2}.\left(12+x\right)=6+\frac{1}{2}x\)
\(\Rightarrow5x-\frac{1}{2}x=6\)
\(\Rightarrow\frac{9}{2}x=6\)
\(\Rightarrow x=\frac{4}{3}\)
Từ đó suy ra y = \(\frac{-2}{15}\)