Tính biểu thức sau một cách hợp lý:\(2+\frac{1}{2+\frac{1}{2+\frac{1}{2+\frac{1}{2}}}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-...-\frac{1}{6}-\frac{1}{2}\)
\(-B=\frac{1}{90}+\frac{1}{72}+\frac{1}{56}+...+\frac{1}{6}+\frac{1}{2}\)
\(-B=\frac{1}{10.9}+\frac{1}{9.8}+\frac{1}{8.7}+...+\frac{1}{3.2}+\frac{1}{2.1}\)
\(-B=\frac{1}{10}-\frac{1}{9}+\frac{1}{9}-\frac{1}{8}+...+\frac{1}{2}-1\)
\(-B=\frac{1}{10}-1\)
\(-B=\frac{9}{10}\)
=> \(B=\frac{-9}{10}\)
\(B=\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-...-\frac{1}{6}-\frac{1}{2}\)
\(=\frac{1}{90}-\left(\frac{1}{72}+\frac{1}{56}+...+\frac{1}{6}+\frac{1}{2}\right)\)
\(=\frac{1}{90}-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{56}+\frac{1}{72}\right)\)
\(=\frac{1}{90}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}+\frac{1}{8.9}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\frac{8}{9}\)
\(=-\frac{79}{90}\)
Đặt :
\(\frac{1}{315}=a;\frac{1}{651}=b\) thay vào A ta được :
\(A=\left(2+a\right)b-\left(3+1-b\right).3a-4ab+12a\)
\(\Leftrightarrow A=2b+ab-12a+3ab-4ab+12a\)
\(\Leftrightarrow A=2b\)
Thay \(b=\frac{1}{651}\) ta được :
\(A=\frac{2}{651}\)
Chúc bạn học tốt !!!
Muốn cho số có hai chữ số giống nhau và chia hết cho 2 thì số đó phải là một trong các số 22, 44, 66, 88. Bây giờ ta tìm trong những số này số mà chia cho 5 thì dư 3.
Đó là số 88.
Xem thêm tại: http://loigiaihay.com/bai-99-trang-39-sgk-toan-6-tap-1-c41a3896.html#ixzz4xczZ4dOb
Ta có :
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2009}}+\frac{1}{2^{2010}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2008}}+\frac{1}{2^{2009}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2008}}+\frac{1}{2^{2009}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2009}}+\frac{1}{2^{2010}}\right)\)
\(A=1-\frac{1}{2^{2010}}\)
\(A=\frac{2^{2010}-1}{2^{2010}}\)
Vậy \(A=\frac{2^{2010}-1}{2^{2010}}\)
Chúc bạn học tốt
\(=\frac{8}{9}+\frac{1}{2}-\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)\)
\(=\frac{8}{9}+\frac{1}{2}-\left(\frac{1}{3}-\frac{1}{9}\right)=1+\frac{1}{2}-\frac{1}{3}=1\frac{1}{6}\)
\(A=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{9900}\)
\(A=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{99\cdot100}\)
\(A=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{4}-\frac{1}{100}=\frac{25}{100}-\frac{1}{100}=\frac{24}{100}=\frac{6}{25}\)
Gọi biểu thức trên là : A
\(A=2+\frac{1}{2+\frac{1}{2+\frac{1}{2+\frac{1}{2}}}}\)
\(A=2+\frac{1}{2+\frac{1}{2+\frac{1}{\frac{5}{4}}}}\)
\(A=2+\frac{1}{2+\frac{1}{2+\frac{4}{5}}}\)
\(A=2+\frac{1}{2+\frac{1}{\frac{14}{5}}}\)
\(A=2+\frac{1}{2+\frac{5}{14}}\)
\(A=2+\frac{1}{\frac{33}{14}}\)
\(A=2+\frac{14}{33}\)
\(A=\frac{80}{33}\)
Vậy : \(2+\frac{1}{2+\frac{1}{2+\frac{1}{2+\frac{1}{2}}}}=\frac{80}{33}\)
viết k hiểu bn ạ