Cho tam giác ABC vuông tại A ,gọi M là trung điểm BC.C/M: MA=\(\frac{1}{2}BC\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Ta có: ΔABC cân tại A
mà AE là đường trung tuyến
nên AE là đường cao
Tam giác vuông ABC, vuông tại A, có AM là trung tuyến
trên tia đối của MA lấy điểm D sao cho MD=AM
Do đó AM=1/2 AD (1)
suy ra tứ giác ABDC là hình bình hành, có ^A=90*
nên ABDC là hình chữ nhật
suy ra AD=BC (2)
Từ (1) và (2) ta có AM = 1/2 BC
\(BM=CM=\frac{1}{2}BC\)
Mà BM=CM=AM
\(\Rightarrow AM=\frac{1}{2}BC\)(1)
Trong tam giác vuông đường trung tuyến ứng với cạnh huyền thì bằng một nửa cạnh huyền nên ta có:
M là trung điểm của BC nên AM là đường trung tuyến (2)
Từ (1) và (2) ta có ;
\(\Delta ABC\)vuông tại A
#)Giải : (Hình tự vẽ lười lắm òi)
Vì \(AB//CD\Rightarrow\widehat{BAC}+\widehat{ACD}=180^o=90^o+\widehat{ACD}=180^o\Rightarrow\widehat{ACD}=90^o\)
Ta có : \(\widehat{BAC}=\widehat{ACD}\)
\(AB=CD\left(c/m\Delta ABM=\Delta CDM\right)\)
AC là cạnh chung
\(\Rightarrow\Delta ABC=\Delta ACD\left(c.g.c\right)\)
\(\Rightarrow AD=BC\)
Mà \(AM=\frac{1}{2}AD\Rightarrow AM=\frac{1}{2}BC\)
A B C D M
M là trung điểm AD => AM = 1/2 AD (1)
và AM = MD
Xét ∆AMB và ∆AMC có :
AM = MD (cmt)
\(\widehat{AMB}=\widehat{AMC}\)( đối đỉnh)
MB = MC (M là trung điểm BC)
do đó ∆AMB = ∆AMC (c-g-c)
=> AB = AC và \(\widehat{B_1}=\widehat{C_1}\)
Mà \(\widehat{B_1};\widehat{C_1}\)ở vị trí so le trong
=> AB // CD
=> \(\widehat{BAC}+\widehat{ACD}=180^o\)( trong cùng phía)
Mà \(\widehat{BAC}=90^o\Rightarrow\widehat{ACD}=90^o\Rightarrow\widehat{BAC}=\widehat{ACD}\)
Xét ∆ABC và ∆CDA có :
AB = AC (cmt)
\(\widehat{BAC}=\widehat{ACD}\)
AC chung
do đó : ∆ABC = ∆CDA
=> BC = AD (2)
Từ (1),(2) => đpcm
a
vì AM là tia phân giác của góc A=>góc BAM=CAM
xét tam giác AMB và tam giác AMC có:
góc BAM=CAM,AM chung,AB=AC=>tam giác AMB = tam giác AMC
b
vì tam giác AMB = tam giác AMC=>MB=MC=>M là trung điểm BC
vì tam giác AMB = tam giác AMC=>góc BAM=CAM mà góc BAM+CAM=180=>BAM=CAM=180 độ/2=90 độ=>AM vuông góc với BC
c
xét tam giác ABM và KCM có
MB=MC,MA=MK,góc BMA=CMK(vì đối đỉnh)=>tam giác ABM = KCM=>AB=CK
vì tam giác ABM = KCM=>góc ABM=KMB mà 2 góc trên ở vị trí so le trog=>AB//CK
Tam giác vuông ABC, vuông tại A, có AM là trung tuyến
trên tia đối của MA lấy điểm D sao cho MD=AM
Do đó AM=1/2 AD (1)
suy ra tứ giác ABDC là hình bình hành, có ^A=90*
nên ABDC là hình chữ nhật
suy ra AD=BC (2)
Từ (1) và (2) ta có AM => 1/2 BC
Tam giác vuông ABC, vuông tại A, có AM là trung tuyến
trên tia đối của MA lấy điểm D sao cho MD=AM
Do đó AM=1/2 AD (1)
suy ra tứ giác ABDC là hình bình hành, có ^A=90*
nên ABDC là hình chữ nhật
suy ra AD=BC (2)
Từ (1) và (2) ta có AM = 1/2 BC (đpcm)