Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác vuông ABC, vuông tại A, có AM là trung tuyến
trên tia đối của MA lấy điểm D sao cho MD=AM
Do đó AM=1/2 AD (1)
suy ra tứ giác ABDC là hình bình hành, có ^A=90*
nên ABDC là hình chữ nhật
suy ra AD=BC (2)
Từ (1) và (2) ta có AM = 1/2 BC
Tam giác vuông ABC, vuông tại A, có AM là trung tuyến
trên tia đối của MA lấy điểm D sao cho MD=AM
Do đó AM=1/2 AD (1)
suy ra tứ giác ABDC là hình bình hành, có ^A=90*
nên ABDC là hình chữ nhật
suy ra AD=BC (2)
Từ (1) và (2) ta có AM => 1/2 BC
Tam giác vuông ABC, vuông tại A, có AM là trung tuyến
trên tia đối của MA lấy điểm D sao cho MD=AM
Do đó AM=1/2 AD (1)
suy ra tứ giác ABDC là hình bình hành, có ^A=90*
nên ABDC là hình chữ nhật
suy ra AD=BC (2)
Từ (1) và (2) ta có AM = 1/2 BC (đpcm)
A B C D M
trên tia đối của MA lấy MD sao cho MA = MD
xét tam giác CMD và tam giác BMA có : BM = MC do M là trung điểm của BC (gt)
góc AMB = góc CMD (đối đỉnh)
=> tam giác CMD = tam giác BMA (c-g-c)
=> CD = AB và góc CDM = góc MAB (đn)
mà góc CDM so le trong với MAB
=> CD // AB (đl)
=> góc BAC = góc ACD (đl)
mà góc BAC = 90 (gt)
=> góc BAC = góc ACD = 90
xét tam giác ABC và tam giác CDAcó : AC chung
CD = AB (cmt)
=> tam giác ABC = tam giác CDA (2cgv)
=> góc CDA = góc ABC mà góc CDA = góc DAB (cmt)
=> góc MAB = góc MBA (tcbc)
=> tam giác AMB cân tại M (đn)
=> MA = MB mà MB = BC/2 do M là trung điểm
=> MA = BC/2
Ta có hình vẽ sau:
A B C D M 1 2
GT: ΔABC ; \(\widehat{A}\) = 90o
MB = MC ; MA = MD
KL: a) ΔAMB = DMC
a) Xét ΔAMB và ΔDMC có:
MA = MD (gt)
\(\widehat{M_1}\) = \(\widehat{M_2}\) ( 2 góc đối đỉnh)
MB = MC (gt)
\(\Rightarrow\) ΔAMB = ΔDMC ( cạnh - góc-cạnh)