A=1^2+2^2+3^2+...+99^2
B=3/1.2+3/3.4+...+3/99.100
C=2/1.4+2/4.7+2/7.11+...+2/96.99
D=1/1.2.3+1/2.3.4+...+98.99.100
E=1/2+1/2^2+1/2^3+...+1/2^100
Đề bài là tính
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*S=1-1/4+1/4-1/7+1/7-1/11+1/11-1/14+1/14-1/17
S=1-1/17=16/17
*M=2(1/1.2+1/2.3+...+1/15.16)
M=2(1-1/2+1/2-1/3+..+1/15-1/16)
M=2(1-1/16)
M=2.15/16
M=15/8
:w
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.11}+\frac{3}{11.14}+\frac{3}{14.17}\)
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)
\(S=1-\frac{1}{17}\)
\(S=\frac{16}{17}\)
\(M=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{15.16}\)
\(M=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(M=2.\left(1-\frac{1}{16}\right)\)
\(M=2.\frac{15}{16}\)
\(=\frac{30}{16}=\frac{15}{8}\)
a; A =1 + 2 +3+ 4+ 5+ ... +n
Xét dãy số 1; 2; 3; 4;5;...;n
Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1
Số số hạng của dãy số trên là: (n - 1) : 1 + 1 = n (số số hạng)
Tổng của dãy số trên là: (n + 1).n x 2
A = (n + 1).n:2
B = 1 + 3 + 5+ 7+ ...+ (2n - 1)
Dãy số trên là dãy số cách đều với khoảng cách là:
3 - 1 = 2
Số số hạng của dãy số trên là: (2n - 1 - 1) : 2 + 1 = n
Tổng của dãy số trên là: (2n - 1 + 1) x n : 2 = n2
Vậy B = n2
c, 4C= (1.2.3+2.3.4+3.4.5+...+8.9.10) .4
==> 4C= [1.2.3.(4-0) + 2.3.4-(5-1) + 8.9.10.(11-7)
==>4C= 1.2.3.4 - 1.2.3.4+ 2.3.4.5-2.3.4.5 + 7.8.9.10- 7.8.9.10 + 8.9.10.11
==> 4C= 8.9.10.11=7920
==> C= 7920 :4=1980
a, Ta có: 3A= 1.2.3+2.3.3+3.4.3+...+99.100.3
3A=1.2.(3-0) + 2.3.(4-1)+ 3.4.(5-2)+ ... + 99.100.( 101-98)
3A=(1.2.3 + 2.3.4+ 3.4.5+ 99.100.101) - (0.1.2 +1.2.3+ 2.3.4 + ... + 98.99.100)
3A= 99.100.101 - 0.1.2
3A= 999900 - 0
3A= 999900
==> A= 999900 : 3
==> A= 333300
Bài 1:
\(A=\dfrac{3}{1.4}+\dfrac{5}{4.9}+\dfrac{7}{9.16}+\dfrac{9}{16.25}+\dfrac{11}{25.36}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{36}\)
\(=1-\dfrac{1}{36}=\dfrac{35}{36}\)
\(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{100.103}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{103}\)
\(=1-\dfrac{1}{103}=\dfrac{102}{103}\)
\(C=\dfrac{3}{1.4}+\dfrac{6}{4.10}+\dfrac{9}{10.19}+\dfrac{12}{19.31}+\dfrac{15}{31.46}+\dfrac{18}{46.64}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{31}+\dfrac{1}{31}-\dfrac{1}{46}+\dfrac{1}{46}-\dfrac{1}{64}\)
\(=1-\dfrac{1}{64}=\dfrac{63}{64}\)
Bài 2:
\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{49.50}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{25}\right)\)
\(=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+...+\dfrac{1}{50}\left(đpcm\right)\)
B1
Số số hạng của dãy là : (99 - 1) : 1 + 1 = 99 ( số )
Tổng của dãy là : (99 + 1) x 99 : 2 = 4950
B2
Số số hạng của dãy là : (999 - 1) : 2 + 1 = 500 (số)
Tổng của dãy là : (999 + 1) x 500 : 2 = 250000
B3
Số số hạng của dãy là : (998 - 10) : 2 + 1 = 495(số)
Tổng của dãy là : (998 + 10) x 495 : 2 = 249480
B4
B5
Để mình thử đã rồi giải cho
Tk hoặc sửa hộ mình nhé
ko can k
lop 3 em cho anh lop 7 (hsg) bai 1
B=(1+99)+(2+98)+...+(49+51)+50
=49*100+50=4950
Bài 1 Số số hạng của dãy là : (50-1):1+1=50(số hạng )
S = (50+1) x 50 : 2 = 1275
A=12+22+...+992
2A=22+32+...+1002
2A-A=(22+32+...+1002)-(12+22+...+992)
A=1002-12
A=10000-1
A=9999