1 / 1+2 + 1 / 1+2+3 +1/ 1+2+3+4 + ....... + 1 / 1+2+3+4+ ... +2017
ai đó giúp mình với viết cả cách làm luôn nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`1/2 xx 1/3 xx 1/4`
`= (1xx1xx1)/(2xx3xx4)`
`= 1/24`
__
`1/2 xx 1/3 : 1/4`
`= 1/2 xx 1/3 xx 4`
`= (1xx1xx4)/(2xx3)`
`= 4/6`
`=2/3`
__
`1/2 : 1/3 xx1/4`
`= 1/2 xx 3 xx 1/4`
`=(1xx3xx1)/(2xx4)`
`= 3/8`
__
`1/2 : 1/3 : 1/4`
`= 1/2 xx 3xx4`
`= 12/2`
`=6`
`1/2xx1/3xx1/4`
`=1/24`
`1/2xx1/3:1/4`
`=1/6xx4`
`=4/6=2/3`
`1/2:1/3xx1/4`
`=1/2xx3xx1/4`
`=3/2xx1/4`
`=3/8`
`1/2:1/3:1/4`
`=1/2xx3xx4`
`=6`
\(=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{2020-2019}{2019.2020}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(=\frac{1}{2}-\frac{1}{2020}=\frac{1009}{2020}\)
Bài 1:
\(=\left(15+47\right)\cdot42+42\cdot38=42\left(15+47+38\right)=42\cdot100=4200\)
Bài 2:
a: \(\Leftrightarrow3^x\left(1+3+3^2\right)=39\)
\(\Leftrightarrow3^x=3\)
hay x=1
b: \(\Leftrightarrow x^{2016}\left(1-x\right)=0\)
hay \(x\in\left\{0;1\right\}\)
a) ( 1/2-1/3-1/6).(1/2+2/3+3/4+...+2017/2018) + 3/4.x = 9/10
0.(1/2+2/3+3/4+...+2017/2018) + 3/4.x = 9/10
0+3/4.x = 9/10
3/4.x = 9/10
x = 9/10: 3/4
x = 6/5
b) x + ( 3/1.3+3/3.5+...+3/13.15) = 11/5
x + 3/2. ( 1-1/3 + 1/3 - 1/5 + ...+ 1/13 - 1/15) = 11/5
x + 3/2. ( 1-1/15) = 11/5
x + 3/2.14/15 = 11/5
x + 7/5 = 11/5
x = 11/5 - 7/5
x = 4/5
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+........+\frac{1}{1+2+3+.......+2017}\)
=> \(1+\frac{1}{2017}\)= \(\frac{2017}{2017}+\frac{1}{2017}\)= \(\frac{2018}{2017}\)
Mình không chắc lắm