Cho nửa đường tròn tâm O, đường kính AB. gọi Ax, By vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng 1 nửa mặt phẳng bờ AB). M là điểm bất kì thuộc Ax. Từ M kẻ tiếp tuyến với nửa đường tròn cắt By ở N.
a) Tính góc MON
b) Chứng minh MN = AM + BN
c) Chứng minh AM.BN = R^2 (R là bán kính của đường tròn O)
a) x4+x3+2x2+x+1=(x4+x3+x2
)+(x2+x+1)=x2
(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3
-3abc=a3+3ab(a+b)+b3+c3
-(3ab(a+b)+3abc)=(a+b)3+c3
-3ab(a+b+c)
=(a+b+c)((a+b)2
-(a+b)c+c2
)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2
-ac-ab+c2
-3ab)=(a+b+c)(a2+b2+c2
-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2
(y-z)+y2
(z-x)+z2
(x-y)=x2
(y-z)-y2
((y-z)+(x-y))+z2
(x-y)
=x2
(y-z)-y2
(y-z)-y2
(x-y)+z2
(x-y)=(y-z)(x2
-y2
)-(x-y)(y2
-z2
)=(y-z)(x2
-2y2+xy+xz+yz)
k mk nha $_$
:D
a) Vì MA , MI là 2tt của đường tròn (O) , nên ^O1 = ^O2 (1)
Vì NB , NI là 2tt của nửa đường tròn (O) , nên ^O3 = ^O4 (2)
Từ (1) và (2) => \(\widehat{O_2}+\widehat{O_3}=\widehat{O_1}+\widehat{O_4}=\frac{180^o}{2}=90^o\)
Mà ^MON = 90^o
Vậy : ^MON = 90^o
b) Theo t/c 2tt cắt nhau , ta có :
AM = MI ; NI = NB
MN = MI + IN = AM + BN
Vậy : MN = AM + BN ( đpcm )
c) Áp dụng hệ thức lượng tam giác trong tam giác OMN vuông tại O , đường cao OI
Ta có : \(OI^2=IM.IN\)
\(\Rightarrow IM.IN=R^2\)( R bán kính )
Mặt khác : MA = MI ; NB = NT
Vậy : AM . BN = R^2 ( đpcm )