K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác OMN vuông tại O có OI ⊥ MN (tính chất tiếp tuyến)

Theo hệ thức lượng trong tam giác vuông, ta có:

O I 2 = MI.NI

Mà: MI = MA, NI = NB (chứng minh trên)

Suy ra : AM.BN =  O I 2  =  R 2

25 tháng 6 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi I là tiếp điểm của tiếp tuyến MN với đường tròn (O). Nối OI

Ta có: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 (hai góc kề bù)

OM là tia phân giác của góc AOI (tính chất hai tiếp tuyến cắt nhau)

ON là tia phân giác của góc BOI (tính chất hai tiếp tuyến cắt nhau)

Suy ra : OM ⊥ ON (tính chất hai góc kề bù)

Vậy Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

17 tháng 9 2021

bạn tự vẽ hình giúp mik nha

a) áp dụng t/c 2 tiếp tuyến cắt nhau ta có

OM là tia phân giác \(\widehat{AOI}\)

ON là tpg \(\widehat{IOB}\)

mà:\(\widehat{AOI}+\widehat{BOI}=180^o\)\(\Rightarrow OM\perp ON\)(t/c 2 góc kề bù)

vậy \(\widehat{MON}=90^o\)

b)từ t/c 2 tiếp tuyến cắt nhau ta có

MA=MI;BN=NI

\(\Rightarrow\)AM+BN=MI+NI=MN9(đpcm)

c)ta có:AM.BN=MI.NI(1)

xét \(\Delta MON\) vuông tại O có

MI.NI(đlý)=\(OI^2=R^2\)(2)

từ (1) và (2)\(\Rightarrow AM.BN=R^2\)

24 tháng 6 2017

gọi H là điểm tiếp điểm của MN với nữa đường tròn

ta có : OM là tia phân giác của góc AOH (theo tính chất 2 tiếp tuyến cắt nhau)

ON là tia phân giác của góc BOH (theo tính chất 2 tiếp tuyến cắt nhau)

mà 2 góc MOH và HON kề bù \(\Rightarrow\) MON = 900

24 tháng 6 2017

b) AM = HM và BN = HN (tính chất 2 tiếp tuyến cắt nhau) (1)

nên MN = HM + HN = AM + BN

vậy MN = AM + BN (đpcm)

c) từ (1) ta có : AM.BN = HM.HN

ta lại có : HM HN = OH2 = R2 (hệ thức lượng)

\(\Rightarrow\) AM.BN = R2 (đpcm)

a: Xét (O) có 

ME là tiếp tuyến

MA là tiếp tuyến

Do đó: ME=MA và OM là tia phân giác của góc AOE(1)

Xét (O) có

NE là tiếp tuyến

NB là tiếp tuyến

Do đó: NE=NB và ON là tia phân giác của góc BOE(2)

Từ (1) và (2) suy ra \(\widehat{MON}=\dfrac{1}{2}\cdot\left(\widehat{EOA}+\widehat{EOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)

b: Ta có: MN=ME+NE

nên MN=MA+NB

c: Xét ΔOMN vuông tại O có OE là đường cao

nên \(OE^2=EM\cdot EN\)

hay \(AM\cdot BN=R^2\)

25 tháng 12 2021

b: Xét (O) có

MC là tiếp tuyến

MA là tiếp tuyến

Do đó: MC=MA

Xét (O) có

NC là tiếp tuyến

NB là tiếp tuyến

Do đó: NC=NB

Ta có: MN=MC+NC

nên MN=MA+NB