Cho tam giác ABC và điểm I thuộc cạnh AC sao cho ∆BAI = ∆BCI. Chứng minh:
a/ BI là tia phân giác của góc ABC
b/ BI vuông góc với AC
c/ I là trung điểm của AC Giúp mình với, mik đang cần gấp ak🙏🙏
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH và ΔKBH có
BA=BK
\(\widehat{ABH}=\widehat{KBH}\)
BH chung
Do đó: ΔABH=ΔKBH
Xét ΔBAI và ΔBKI có
BA=BK
\(\widehat{ABI}=\widehat{KBI}\)
BI chung
Do đó: ΔBAI=ΔBKI
Suy ra: IA=IK
mà BA=BK
nên BI là đường trung trực của AK
=>BI vuông góc với AK
b: Xét ΔNAK có
NH là đường cao
NH là đường trung tuyến
Do đó:ΔNAK cân tại N
mà NI là đường cao
nên NI là phân giác của góc ANK
a) Xét \(\Delta BAI\)và \(\Delta BAC\)có :
AB : cạnh chung
\(\widehat{BAI}=\widehat{BAC}\left(=90^0\right)\)
AC = AI ( gt )
\(\Rightarrow\Delta BAI=\Delta BAC\left(c-g-c\right)\)
\(\Rightarrow\widehat{ABI}=\widehat{ABC}\)( do 2 tam giác = nhau )
Mà \(\widehat{ABI}+\widehat{BAH}=90^0\)( tổng 3 góc = 1800 mà có 1 góc = 900 ( do AH\(\perp\)BI ) nên tổng 2 góc còn lại = 900 )
\(\Rightarrow\widehat{ABC}+\widehat{BAK}=90^0\)
\(\Rightarrow\widehat{BAH}=\widehat{BAK}\)
=> BA là đường phân giác của \(\widehat{HBK}\)
b) Ta có tam giác vuông ABK = CBA ( ch-gn ) => AB2 = BK . BC (1)
Ta có tam giác vuông ABH = IBA ( ch-gn ) => AB2 = BH . BI (2)
Từ (1) và (2) => BK . BC = BH . BI => HK // IC ( theo định lí Ta-let )
c) Gọi E là giao điểm của HK và BA
Có tam giác BHK cân ( BE là đường cao, phân giác ) => BH = BK
Ta có BA là đường trung trực của HK => HA = KA
Có tam giác vuông BHN = BKM ( gn-cgv ) => HN = KM
=> HA + AN = AK + AM => AN = AM => Tam giác AMN cân tại A
a: IM vuông góc AC
AB vuông goc AC
=>IM//AB
=>góc BAM=góc IMA
b: XétΔCIM vuông tại I và ΔCIN vuông tại I có
CI chung
IM=IN
=>ΔCIM=ΔCIN
c: Xét tứ giác AKMI có
MI//AK
MI=AK
góc IAK=90 độ
=>AKMI là hình chữ nhật
=>MK//AC
d: AKMI là hình chữ nhật
=>AM=KI
a)Xét Δ BIC có:
BA là đường cao
BA là đường trung tuyến
⇒ ΔBIC cân tại B
Ta có: BAI=BAC(c-g-c)
Ta có: Tam giác BIC cân tại B
Mà BA là đường cao
⇒BA là đường phân giác của góc HBK
b):
Ta có ΔABK=CBA( ch-gn)=>AB^2=BK.BC(1)
Ta có ΔABH=IBA( ch-gn)=>AB^2=BH.BI(2)
(1)(2)=>BK.BC=BH.BI=>HK//IC ( định lý Ta-lét)
c):
Gọi E là giao điểm của HK&BA
Có Tam giác BHK cân ( BE là đường cao, phân giác)⇒BH=BK
Ta có BA là đường trung trực của HK⇒HA=AK
Có tam giác vg BHN=BKM (gn-cgv⇒HN=KM
⇒HA+AN=AK+AM
⇒AN=AM
⇒Δ AMN cân tại A
Có gì khong hiểu hỏi lại cj nhé:
a, b ,c lần lượt từ trên xuống.
a: ΔBAI=ΔBCI
=>\(\widehat{ABI}=\widehat{CBI}\)
mà tia BI nằm giữa hai tia BA và BC
nên BI là tia phân giác của góc ABC
b: Ta có: ΔBAI=ΔBCI
=>\(\widehat{BIA}=\widehat{BIC}\)
mà \(\widehat{BIA}+\widehat{BIC}=180^0\)(hai góc kề bù)
nên \(\widehat{BIA}=\widehat{BIC}=\dfrac{180^0}{2}=90^0\)
=>BI\(\perp\)AC
c: Ta có: ΔBIA=ΔBIC
=>IA=IC
mà I nằm giữa A và C
nên I là trung điểm của AC