Cho tam giác ABC vuông tại A, O là trung điểm AC. Gọi D là điểm đối xứng của A qua BO. Đường thẳng qua B vuông góc với BA cắt OD kéo dài tại E. Gọi F là trung điểm AO
Chứng minh EF vuông góc với BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có tam giác ABC vuông tại A nên đường cao AH cũng là đường trung tuyến của tam giác ABC. Vậy ta có AH = HD.
Vì D là trung điểm của BC nên BD = CD.
Vì góc DE vuông góc với AC tại E nên tam giác ADE vuông góc tại E.
Vì F là điểm đối xứng của E qua D nên tam giác ADF cũng tại D.
Ta có:
- Tam giác ADE vuông tại E và tam giác ADF vuông tại D có cạnh chung AD.
- Tam giác ADE và tam giác ADF có cạnh AD bằng nhau (vì F là điểm đối xứng của E qua D).
Vậy tam giác ADE và tam giác ADF là hai tam giác cân có cạnh chung AD.
Do đó, ta có AE = AF và DE = DF.
Vì M là trung điểm của HC nên ta có HM = MC.
Vì FM là đường trung tuyến của tam giác HAC nên ta có FM = \(\frac{1}{2}\)AC.
Ta cần chứng minh FM vuông góc với AM.
Ta có:
- Tam giác ADE và tam giác ADF là hai tam giác cân có cạnh chung AD.
- AE = AF và DE = DF.
Do đó, tam giác ADE và tam giác ADF là hai tam giác đồng dạng (theo nguyên tắc đồng dạng cận-cạnh-cạnh).
Do đó, ta có \(\frac{AE}{DE} = \frac{AF}{DF}\).
Vì AE = AF và DE = DF nên ta có \(\frac{AE}{DE} = \frac{AF}{DF} = 1\).
Vậy tam giác ADE và tam giác ADF là hai tam giác đồng dạng cân.
Do đó, ta có góc EAD = góc FAD và góc AED = góc AFD.
Vì góc EAD + góc AED = 90° (do tam giác ADE vuông góc tại E) nên góc FAD + góc AFD = 90°.
Do đó, ta có góc FAM = 90°.
Do đó, FM vuông góc với AM.
a: Xét tứ giác ADEF có
\(\widehat{ADE}=\widehat{AFE}=\widehat{DAF}=90^0\)
=>ADEF là hình chữ nhật
b: Xét ΔABC có
E là trung điểm của CB
ED//AB
Do đó: D là trung điểm của AC
Xét tứ giác AECK có
D là trung điểm chung của AC và EK
=>AECK là hình bình hành
Hình bình hành AECK có AC\(\perp\)EK
nên AECK là hình thoi
c: Xét ΔABC có
E,D lần lượt là trung điểm của CB,CA
=>ED là đường trung bình của ΔABC
=>\(ED=\dfrac{AB}{2}\)
mà \(ED=\dfrac{EK}{2}\)
nên EK=AB
Ta có: ED//AB
D\(\in\)EK
Do đó: EK//AB
Ta có: ADEF là hình chữ nhật
=>AE cắt DF tại trung điểm của mỗi đường
=>O là trung điểm chung của AE và DF
Xét tứ giác ABEK có
KE//AB
KE=AB
Do đó: ABEK là hình bình hành
=>AE cắt BK tại trung điểm của mỗi đường và AE=BK
mà O là trung điểm của AE
nên O là trung điểm của BK
=>B,O,K thẳng hàng
ΔEMA vuông tại M
mà MO là đường trung tuyến
nên \(MO=\dfrac{AE}{2}\)
mà AE=DF
nên \(MO=\dfrac{DF}{2}\)
Xét ΔDMF có
MO là đường trung tuyến
MO=DF/2
Do đó: ΔDMF vuông tại M
=>\(\widehat{DMF}=90^0\)
a) Xét tứ giác ADEF có : góc A = 90 độ ( tam giác ABC vuông tại A)
góc EFA = 90 độ ( EF vuông góc với AB tại F)
góc EDA = 90 ( ED vuông góc với AC tại D)
suy ra : ADEF là hcn
b) Xét tam giác ABC có : BE = EC ( E là trung điểm của BC )
ED song song với AB ( EFAD là hcn )
suy ra : AD = DC
Xét tứ giác AECK có : ED = DK ( E đối xứng với K qua D )
AD = DC (cmt)
suy ra : tứ giác AECK là hình bình hành
mà ED vuông góc với AC
suy ra : hbh AECK là hình thoi
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành