Cho $A'$, $B'$, $C'$ nằm trên các cạnh $BC$, $AC$, $AB$ của $\Delta $ABC, biết $AA'$, $BB'$, $CC'$ đồng quy tại $M$. Chứng minh rằng $\dfrac{AM}{A'M}=\dfrac{AB'}{CB'}+\dfrac{AC'}{BC'}$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 120 chia hết cho a
300 chia hết cho a
420 chia hết cho a
=> a \(\in\)ƯC(120,300.420)
Ta có:
120 = 23.3.5
300 = 22.3.52
420 = 22.3.5.7
UCLN(120,300,420) = 22.3.5 = 60
UC(120,300,420) = Ư(60) = {1;2;3;4;5;6;10;12;15;20;30;60}
Vì a > 20 nên a = {30;60}
b) 56 chia hết cho a
560 chia hết cho a
5600 chia hết cho a
=>a \(\in\)ƯC(56,560,5600)
Ta có:
56 = 23.7
560 = 24.5.7
5600 = 25.52.7
UCLN(56,560,5600) = 23.7 = 56
UC(56,560,5600) = Ư(56) = {1;2;4;7;8;14;28;56}
Vì a lớn nhất nên a = 56
Nếu chia hết cho 2 và 5, không chia hết cho 9 thì chỉ có 0 thôi, nhưng nếu mà chia hết cho cả 3 thì đề sai r đó
A = 200*
Mà A chia hết cho 2 và 5, các số chia hết cho 2 và 5 thì có chữ số tận cùng là 0
NHƯNG nếu dấu sao là 0 thì có số 2000, mà 2000 ko chia hết cho 3.
Như vậy, đề sai.
Qua �A vẽ đường thẳng song song với ��BC cắt ��′BB′ tại �D và cắt ��′CC′ tại �E.
Khi đó
Δ���ΔAME có ��AE // �′�A′C suy ra ���′�=���′�A′MAM=A′CAE (1)
Δ���ΔAMD có ��AD // �′�A′B suy ra ���′�=���′�A′MAM=A′BAD (2)
Từ (1) và (2) ta có ���′�=���′�=���′�=��+���′�+�′�=����A′MAM=A′CAE=A′BAD=A′C+A′BAD+AE=BCDE (*)
Chứng minh tương tự ta cũng có:
Δ��′�ΔAB′D có ��AD // ��BC suy ra ��′�′�=����B′CAB′=BCAD (3)
Δ��′�ΔAC′E có ��AE // ��BC suy ra ��′�′�=����C′BAC′=BCAE (4)
Từ (3) và (4) ta có ��′�′�+��′��′=����+����=����B′CAB′+BC′AC′=BCAD+BCAE=BCDE (**)
Từ (*) và (**) ta có ���′�=����=��′�′�+��′��′A′MAM=BCDE=B′CAB′+BC′AC′ (đpcm).
Qua �A vẽ đường thẳng song song với ��BC cắt ��′BB′ tại �D và cắt ��′CC′ tại �E.
Khi đó
Δ���ΔAME có ��AE // �′�A′C suy ra ���′�=���′�A′MAM=A′CAE (1)
Δ���ΔAMD có ��AD // �′�A′B suy ra ���′�=���′�A′MAM=A′BAD (2)
Từ (1) và (2) ta có ���′�=���′�=���′�=��+���′�+�′�=����A′MAM=A′CAE=A′BAD=A′C+A′BAD+AE=BCDE (*)
Chứng minh tương tự ta cũng có:
Δ��′�ΔAB′D có ��AD // ��BC suy ra ��′�′�=����B′CAB′=BCAD (3)
Δ��′�ΔAC′E có ��AE // ��BC suy ra ��′�′�=����C′BAC′=BCAE (4)
Từ (3) và (4) ta có ��′�′�+��′��′=����+����=����B′CAB′+BC′AC′=BCAD+BCAE=BCDE (**)
Từ (*) và (**) ta có ���′�=����=��′�′�+��′��′A′MAM=BCDE=B′CAB′+BC′AC′ (đpcm).