giải và biện luận
\(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{1}\ne\dfrac{1}{m}\)
=>\(m^2\ne1\)
=>\(m\notin\left\{1;-1\right\}\)
Để hệ có vô số nghiệm thì \(\dfrac{m}{1}=\dfrac{1}{m}=\dfrac{3m-1}{m+1}\)
=>\(\left\{{}\begin{matrix}\dfrac{m}{1}=\dfrac{1}{m}\\\dfrac{1}{m}=\dfrac{3m-1}{m+1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m^2=1\\3m^2-m=m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{1;-1\right\}\\3m^2-2m-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\in\left\{1;-1\right\}\\\left(m-1\right)\left(3m+1\right)=0\end{matrix}\right.\)
=>m=1
Để hệ vô nghiệm thì \(\dfrac{m}{1}=\dfrac{1}{m}\ne\dfrac{3m-1}{m+1}\)
=>\(\left\{{}\begin{matrix}\dfrac{m}{1}=\dfrac{1}{m}\\\dfrac{m}{1}\ne\dfrac{3m-1}{m+1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m^2=1\\m^2+m\ne3m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\in\left\{1;-1\right\}\\m^2-2m+1\ne0\end{matrix}\right.\)
=>m=-1
b: Để hệ có vô số nghiệm thì \(\dfrac{m}{1}=\dfrac{4}{m}=\dfrac{10-m}{4}\)
=>\(\left\{{}\begin{matrix}\dfrac{m}{1}=\dfrac{4}{m}\\\dfrac{4}{m}=\dfrac{10-m}{4}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m^2=4\\10m-m^2=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m^2-10m+16=0\end{matrix}\right.\)
=>m=2
Để hệ vô nghiệm thì \(\dfrac{m}{1}=\dfrac{4}{m}\ne\dfrac{10-m}{4}\)
=>\(\left\{{}\begin{matrix}\dfrac{m}{1}=\dfrac{4}{m}\\\dfrac{m}{1}\ne\dfrac{10-m}{4}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m^2=4\\4m\ne10-m\end{matrix}\right.\Leftrightarrow m=-2\)
Để hệ có nghiệm duy nhất thì \(\dfrac{m}{1}\ne\dfrac{4}{m}\)
=>\(m^2\ne4\)
=>\(m\notin\left\{2;-2\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1\\x+my=m+1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(m-1\right)\left(m+1\right)x=\left(m-1\right)\left(2m+1\right)\\x+my=m+1\end{matrix}\right.\)
- Với \(m=1\) hệ có vô số nghiệm
- Với \(m=-1\) hệ vô nghiệm
- Với \(m=\pm1\) hệ có nghiệm duy nhất: \(\left\{{}\begin{matrix}x=\dfrac{2m+1}{m+1}\\y=\dfrac{m}{m+1}\end{matrix}\right.\)
Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{m}{1}\ne\dfrac{1}{m}\)
=>\(m^2\ne1\)
=>\(m\notin\left\{1;-1\right\}\)
Để hệ phương trình có vô số nghiệm thì \(\dfrac{m}{1}=\dfrac{1}{m}=\dfrac{3m-1}{m+1}\)
=>\(\left\{{}\begin{matrix}\dfrac{m}{1}=\dfrac{1}{m}\\\dfrac{1}{m}=\dfrac{3m-1}{m+1}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2=1\\m\left(3m-1\right)=m+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\in\left\{1;-1\right\}\\3m^2-m-m-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\in\left\{1;-1\right\}\\3m^2-2m-1=0\end{matrix}\right.\Leftrightarrow m=1\)
Để hệ phương trình vô nghiệm thì \(\dfrac{m}{1}=\dfrac{1}{m}\ne\dfrac{3m-1}{m+1}\)
=>\(\left\{{}\begin{matrix}m^2=1\\m\left(3m-1\right)\ne m+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\in\left\{1;-1\right\}\\3m^2-2m-1\ne0\end{matrix}\right.\)
=>\(m=-1\)
- Với \(m=0\Leftrightarrow2x=2\Rightarrow x=1\) hpt có vô số nghiệm
- Với \(m\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}mx+2my=-m\\4x+2my=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-4\right)x=-m-4\\4x+2my=4\end{matrix}\right.\)
+ Với \(m=4\) hệ vô nghiệm
+ Với \(m\ne4\) hệ có nghiệm duy nhất: \(\left\{{}\begin{matrix}x=\dfrac{-m-4}{m-4}=\dfrac{m+4}{4-m}\\y=\dfrac{2-2x}{m}=\dfrac{4}{m-4}\end{matrix}\right.\)
Vậy:
- Với \(m=0\) hệ vô số nghiệm
- Với \(m=4\) hệ vô nghiệm
- Với \(m\ne\left\{0;4\right\}\) hệ có nghiệm duy nhất \(\left\{{}\begin{matrix}x=\dfrac{m+4}{4-m}\\y=\dfrac{4}{m-4}\end{matrix}\right.\)
mk lm câu khó nhất trong các câu này , rồi bn làm tương tự với các câu còn lại nha .
d) ta có : \(\left\{{}\begin{matrix}2x-y=3+2m\\mx+y=\left(m+1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\mx+2x-3-2m=m^2+2m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\mx+2x=m^2+4m+4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\\left(m+2\right)x=\left(m+2\right)^2\end{matrix}\right.\).....(1)
th1: \(m+2=0\Leftrightarrow m=-2\)
khi đó ta có : (1) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\0x=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\in R\\y=2x+1\end{matrix}\right.\)
\(\Rightarrow\) phương trình có vô số nghiệm
th2: \(m+2\ne0\Leftrightarrow m\ne-2\)
khi đó ta có : (1) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\x=m+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)
\(\Rightarrow\) phương trình có nghiệm duy nhất \(\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)
vậy khi +) \(m=-2\) phương trình có vô số nghiệm
+) khi \(m\ne-2\) phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)
Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{m}{1}\ne\dfrac{4}{m}\)
=>\(m^2\ne4\)
=>\(m\notin\left\{2;-2\right\}\)
Để hệ phương trình có vô số nghiệm thì \(\dfrac{m}{1}=\dfrac{4}{m}=\dfrac{10-m}{4}\)
=>\(\left\{{}\begin{matrix}\dfrac{m}{1}=\dfrac{4}{m}\\\dfrac{m}{1}=\dfrac{10-m}{4}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m^2=4\\4m=10-m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5m=10\\m\in\left\{2;-2\right\}\end{matrix}\right.\)
=>m=2
Để hệ phương trình vô nghiệm thì \(\dfrac{m}{1}=\dfrac{4}{m}\ne\dfrac{10-m}{4}\)
=>\(\left\{{}\begin{matrix}m^2=4\\\dfrac{4}{m}\ne\dfrac{10-m}{4}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\10m-m^2\ne16\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m^2-10m+16\ne0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\\left(m-2\right)\left(m-8\right)\ne0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m\notin\left\{2;8\right\}\end{matrix}\right.\Leftrightarrow m=-2\)