tím các só nghuyên thỏa mãn (6xy-10)+(3y-12)=12
mn giúp tôi câu này
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>3y(2x+1)-10x-5=7
=>(2x+1)(3y-5)=7
=>\(\left(2x+1;3y-5\right)\in\left\{\left(1;7\right);\left(7;1\right)\right\}\)(Vì x,y là số nguyên)
=>\(\left(x,y\right)\in\left\{\left(0;6\right);\left(3;2\right)\right\}\)
3y2=12-\(|x-2|\)suy ra 3y2 + /x-2/ =12
Vì /x-2/ \(\ge0;\forall x\); y2\(\ge0;\forall y\)
mà x, y nguyên
TH1: y2=4 và /x-2/ = 0
suy ra y thuộc {2; -2} và x=2
TH2:
y2=1 và /x-2/ = 9
suy ra y thuộc {1; -1} và x thuộc {11; -7}
TH3:
y2=0 và /x-2/ = 12
suy ra y =0 và x thuộc {14; -10}
Tự kết luận nhé
Câu 1:
(2x + 1) + (2x + 2) + ... + (2x + 2015) = 0
=> 2x + 1 + 2x + 2 + ... + 2x + 2015 = 0
=> 2015.2x + (1 + 2 + ... + 2015) = 0
=> 4030x + (2015 + 1).2015:2 = 0
=> 4030x + 2031120 = 0
=> x = -504
Câu 2:
x - y = 8; y - z = 10; x + z = 12
=> (x - y) + (y - z) = 8 + 10 = 18
=> x - z = 18
=> x = (12 + 18) : 2 = 15
=> z = 15 - 18 = -3
=> y = 15 - 8 = 7
=> x + y + z = 15 + 7 + (-3) = 19
9x2 + 3y2 + 6xy - 6x + 2y - 35 = 0
<=> (9x2 + 6xy + y2) - 2(3x + y) + 1 + 2(y2 + 2y + 1) - 37 = 0
<=> (3x + y - 1)2 = 37 - 2(y + 1)2
Ta có: (3x + y - 1)2 \(\ge\)0 => 37 - 2(y + 1)2 \(\ge\)0
=> (y + 1)2 \(\le\)37/2
Do y nguyên và (y + 1)2 là số chính phương
=> (y + 1)2 \(\in\){0; 1; 4; 9; 16}
=> y + 1 \(\in\){0; 1; -1; 2; -2; 3; -3; 4; -4}
Lập bảng
y + 1 | 0 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 |
y | -1 | 0 | -2 | 1 | -3 | 2 | -4 | 3 | -5 |
Với y = -1 => (3x - 1 - 1)2 = 37 - 2(-1 + 1)2
<=> (3x - 2)2 = 37
Do x nguyên và (3x - 2)2 là số chính phương
mà 37 là số nguyên tố => ko có giá trị y tm
.... (tự thay y vào)
bài trc sai
a) 5xy + 5x + 3y = -16
=> 5xy + 5x + 3y + 3 - 3 = -16
=> 5x(y + 1 ) + 3 ( y + 1 ) - 3 = -16
=> ( 5x + 3 ) ( y + 1 ) - 3 = - 16
=> ( 5x + 3 ) ( y + 1 ) = -13
Ta có bảng :
5x + 3 | -13 | 1 | -1 | 13 |
y + 1 | 1 | -13 | 13 | -1 |
=>
x | 2 | |||
y | 0 | -14 | 12 | -2 |
Do x, y E Z => x = 2; y = -2
b) 3x + 7 = y( x + 2)
=> 3x + 7 = xy + 2y
=> 3x + 7 - xy - 2y = 0
=> 3x - xy + 1 + 6 - 2y = 0
=> x ( 3 - y ) + 1 + 2 ( 3 - y ) = 0
=> ( x + 2 ) ( 3 - y ) = -1
Ta có bảng :
x + 2 | 1 | -1 |
3 - y | -1 | 1 |
=>
x | -1 | -3 |
y | 4 | 2 |
Vậy, x = -1; y = 4
hoặc x = -3 ; y =2
(6\(xy\) - 10) + (3y - 12) = 12
6\(xy\) - 10 + 3y - 12 = 12
6\(xy\) + 3y = 12 + 12 + 10
y.(6\(x\) + 3) = 34
34 = 2.17
Ư(34) = {-34; -17; -2; -1; 1; 2; 17; 34}
Lập bảng ta có:
Theo bảng trên ta có không có cặp giá trị nguyên nào của \(x\); y thỏa mãn đề bài.