Tìm x, biết:
(2/30)^x+(2/3)^x+2=104/243
Dấu ^ là mũ nha, còn / là phần
Giúp tuiii ạ!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ở bài 1 đầu bài là viết các tich và các thương sau dưới dạng lũy thừa mình viết thiếu
Bạn chú thích hơi quá lố :)
Ta có :( 5x - 3y + 4z ) . ( 5x - 3y - 4z ) \(=\left(5x-3y\right)^2-16z^2\)
\(=25x^2-30xy+9y^2-16z^2\)
Mà x^2=y^2 + z^2 nên ( 5x - 3y + 4z ) . ( 5x - 3y - 4z )\(=25x^2-30xy+9y^2-16\left(x^2-y^2\right)\)
\(=9x^2-30xy+25y^2=\left(3x-5y\right)^2\)
Học tốt !
\(a)\)\(\left(50-6.x\right).18=2^3.3^2.5\)
\(\Leftrightarrow\)\(\left(50-6.x\right).18=8.9.5\)
\(\Leftrightarrow\)\(\left(50-6.x\right).18=360\)
\(\Leftrightarrow\)\(\left(50-6.x\right)=360\div18\)
\(\Leftrightarrow\)\(50-6.x=20\)
\(\Leftrightarrow\)\(6.x=50-20\)
\(\Leftrightarrow\)\(6.x=30\)
\(\Leftrightarrow\)\(x=5\)
\(b)\)\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=7450\)
\(\Leftrightarrow\)\(100x+\left(1+2+3+...+100\right)=7450\)
\(\Leftrightarrow\)\(100x+5050=7450\)
\(\Leftrightarrow\)\(100x=7450-5050\)
\(\Leftrightarrow\)\(100x=2400\)
\(\Leftrightarrow\)\(x=24\)
b.
(x+1)+(x+2)+...+(x+100)=7450
=> 100x + (1+2+3+...+100)=7450
=>100x + (100+1).50=7450
=>100x=2400
=>x=24
131 . x - 942 = 2^7 . 2^3
131 . x - 942 = 2^10
131 . x - 942 = 1024
131 . x = 1024 + 942
131 . x = 1966
x = 1966 : 131
x \(\approx15\)
b ) [ ( x + 32 ) - 17 ] . 2 = 42
[ ( x + 32 ) - 17 ] = 42 : 2
( x + 32 ) - 17 = 21
x + 32 = 21 + 17
x + 32 = 38
x = 38 - 32
x = 6
a) x2.x3:7=224
=>x5 :7=224
=>x5 =32
=>x5 =25 => x=2
b)x3 :xx +7=8
=>x3-x =1
=>x3-x =13-x
=> x=1
c) xn =1
=> xn=1n
=> x=1
k cho minh nhee:3
Bài 1 :
\(A=3^0+3^1+3^2+3^3+...+3^{98}\)
\(A=\left(1+3+3^2\right)+.....+\left(3^{97}+3^{98}+3^{99}\right)\) ( Nhóm 3 số 1 nhé )
\(A=13+.....+3^{97}.13⋮13\left(\text{đ}pcm\right)\)
Bài 2 :
Theo ý a ta có :
\(A=13+.....+3^{97}.13+3^{99}+3^{100}\)
\(A=13+.....+3^{97}.13+3^{99}.4⋮̸13\)
Bài 3 :
Để D chia hết cho 2 thì x chia hết cho 2
1. \(A=3^0+3^1+3^2+...+3^{98}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^{96}\right)\)chia hết cho \(13\).
2. \(B=3^0+3^1+3^2+3^3+...+3^{100}\)
\(=1+3+\left(3^2+3^3+3^4\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(=4+3^2\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)
\(=4+13\left(3^2+3^5+...+3^{98}\right)\)không chia hết cho \(13\).
3. \(D=\left(12.3+26.b+2022.c+x\right)\)chia hết cho \(2\)
\(\Leftrightarrow x⋮2\)(vì \(12.3⋮2,26b⋮2,2022c⋮2\))
Bài 1:
a) 82 . 22 = 64 . 4 = 256
b) 25. 4 = 25. 22= 25+2 = 27
`#3107.101107`
\(\left(\dfrac{2}{3}\right)^x+\left(\dfrac{2}{3}\right)^{x+2}=\dfrac{104}{243}?\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x+\left(\dfrac{2}{3}\right)^x\cdot\left(\dfrac{2}{3}\right)^2=\dfrac{104}{243}\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x\cdot\left(1+\dfrac{2^2}{3^2}\right)=\dfrac{104}{243}\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x\cdot\left(1+\dfrac{4}{9}\right)=\dfrac{104}{243}\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x\cdot\dfrac{13}{9}=\dfrac{104}{243}\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x=\dfrac{104}{243}\div\dfrac{13}{9}\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x=\dfrac{8}{27}\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x=\dfrac{2^3}{3^3}\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x=\left(\dfrac{2}{3}\right)^3\)
\(\Rightarrow x=3\)
Vậy, `x = 3.`