Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho A = 2+ 22 + 23 +……+ 260 . So sánh A và B = 261.
Mình đg cần gấp ạ!!
\(A=2+2^2+2^3+\dots+2^{60}\\2A=2^2+2^3+2^4+\dots+2^{61}\\2A-A=(2^2+2^3+2^3+\dots+2^{61})-(2+2^2+2^3+\dots+2^{60})\\A=2^{61}-2\)
Ta thấy: \(2^{61}-2< 2^{61}\)
\(\Rightarrow A< B\)
A=2+22+23+...+260
\(\Rightarrow\)2A=22+23+24+...+261
\(\Rightarrow\)2A-A=(22+23+24+...+261)-(2+22+2324+...+260)
\(\Rightarrow\)A=261-2
Mà 261-2<261 nên A<B
Vậy A<B
\(A=2+2^2+2^3+\dots+2^{60}\\2A=2^2+2^3+2^4+\dots+2^{61}\\2A-A=(2^2+2^3+2^3+\dots+2^{61})-(2+2^2+2^3+\dots+2^{60})\\A=2^{61}-2\)
Ta thấy: \(2^{61}-2< 2^{61}\)
\(\Rightarrow A< B\)
A=2+22+23+...+260
\(\Rightarrow\)2A=22+23+24+...+261
\(\Rightarrow\)2A-A=(22+23+24+...+261)-(2+22+2324+...+260)
\(\Rightarrow\)A=261-2
Mà 261-2<261 nên A<B
Vậy A<B