Tìm một số chính phương có 4 chữ số sao cho số đó vừa là spc vừa là 1 số lập phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử a là một số có lập phương là số có 4 chữ số
\(\Rightarrow1000\le a^3\le9999\Rightarrow\sqrt[3]{1000}=10\le a\le\sqrt[3]{9999}\approx21,5\)
\(\Rightarrow10\le a\le21\)
Ta kiểm tra xem với giá trị nào của a \(\left(10\le a\le21\right)\) thì \(a^3\) là một số chính phương (thử bằng máy tính ...)
Ta có: \(16^3=4096=64^2\)
Vậy tìm được 1 số là 4096 = 642 = 163
Gọi số cần tìm là A
Đặt A = a2 = b3
Ta có: 1000 \(\le\) A \(\le\) 9999
\(\Rightarrow\) 10 \(\le\) b \(\le\) 21
Mà a2 = b3 = b2 . b
\(\Rightarrow\)b là số chính phương
\(\Rightarrow\)b = 16
\(\Rightarrow\)A = 4096
Vậy số cần tìm là: 4096
Gọi số cần tìm là A
Đặt A=a2=b3A=a2=b3;
Ta có 1000 ≤ A≤ 9999 => 10≤ b ≤ 21
Mà a2=b3=b2.ba2=b3=b2.b=> b là số chính phương => b=16 => A= 4096
Gọi số cần tìm là A
A = a^2=b^3
Ta co : 1000 \(\le\) A \(\le\) 9999
10 \(\le\) b \(\le\) 21
LAi co :
a^2=b^3=b^2.b=> b la so chinh phuong => b=16(vi 4^2=16)=> A = 4096
Gọi số chính phương đó là abcd.
Vì abcd vừa là số chính phương vừa là một lập phương nên đặt abcd = x² = y³ với x, y ∈ N
Vì y³ = x² nên y cũng là một số chính phương .
Ta có 1000 ≤ abcd(-) ≤ 9999 => 10 ≤ y ≤ 21 và y chính phương
=> y = 16 => abcd(-) = 4096
Vậy số cần tìm là 4096.
chuẩn 100%
:3
Gọi số cần tìm là A
Đặt A=a2=b3A=a2=b3;
Ta có 1000 ≤ A≤ 9999 => 10≤ b ≤ 21
Mà a2=b3=b2.ba2=b3=b2.b=> b là số chính phương => b=16 => A= 4096
gọi số cần tìm là:a
dặt a=a2=ba3=a2=b3
Ta có 100<a<9999 => 10<b<21
mà a2=b3=b2.ba2=b3=b2,b=> số phương trình => b=16,a=4096
Gọi số chính phương đó là abcd.
Vì abcd vừa là số chính phương vừa là một lập phương nên đặt abcd = x² = y³ với x, y ∈ N
Vì y³ = x² nên y cũng là một số chính phương .
Ta có 1000 ≤ abcd(-) ≤ 9999 => 10 ≤ y ≤ 21 và y chính phương
=> y = 16 => abcd(-) = 4096
Vậy số cần tìm là 4096.
cho mik nhé
Gọi số chính phương đó là abcd(-) (abcd gạch đầu :D).
Vì abcd(-) vừa là số chính phương vừa là một lập phương nên đặt abcd(-) = x² = y³ với x, y ∈ N
Vì y³ = x² nên y cũng là một số chính phương .
Ta có 1000 ≤ abcd(-) ≤ 9999 => 10 ≤ y ≤ 21 và y chính phương => y = 16 => abcd(-) = 4096
Vậy số cần tìm là 4096.