K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 1 2024

\(\Leftrightarrow x^3+y^3-x^2y-xy^2-6xy=0\)

\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)-xy\left(x+y+6\right)=0\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) với \(a^2\ge4b\) 

\(\Rightarrow a^3-3ab-b\left(a+6\right)=0\)

\(\Leftrightarrow a^3-2b\left(2a+3\right)=0\)

\(\Leftrightarrow8a^3+27-16b\left(2a+3\right)=27\)

\(\Leftrightarrow\left(2a+3\right)\left(4a^2-6a+9\right)-16b\left(2a+3\right)=27\)

\(\Leftrightarrow\left(2a+3\right)\left(4a^2-6a+9-16b\right)=27\)

Tới đây là pt ước số khá đơn giản, chắc em tự hoàn thành bài toán được.

22 tháng 3 2023

\(\dfrac{x}{3}-\dfrac{2}{y}=\dfrac{1}{2}\\ \Rightarrow\dfrac{2}{y}=\dfrac{x}{3}-\dfrac{1}{2}\\\Rightarrow \dfrac{2}{y}=\dfrac{2x-3}{6}\\ \Rightarrow y\left(2x-3\right)=2\cdot6\\ \Rightarrow y\left(2x-3\right)=12\)

mà `y in ZZ;x in ZZ`

`=>y in ZZ;2x-3 in ZZ`

`=>y;2x-3` thuộc ước nguyên của `12`

`=>y;2x-3 in {+-1;+-2;+-3;+-4;+-6;+-12}`

Ta có bảng sau :

`y``-1``-2``-3``-4``-6``-12``1``2``3``4``6``12`
`2x-3``-1``-2``-3``-4``-6``-12``1``2``3``4``6``12`
`x``1``1/2``0``-1/2``-3/2``-9/2``2``5/2``3``7/2``9/2``15/2`

Vì `x;y in ZZ`

nên `(x;y)=(1;-1);(0;-3);(2;1);(3;3)`

23 tháng 6 2021

x( x + y )2 - y + 1 = 0

<=> x( x2 + 2xy + y2 ) - y + 1 = 0

<=> x3 + 2x2y + xy2 - y + 1 = 0

<=> xy2 + ( 2x2 - 1 )y + x3 + 1 = 0 (*)

Coi (*) là phương trình bậc 2 ẩn y , x là tham số 

(*) có nghiệm <=> Δ ≥ 0 <=> ( 2x2 - 1 )2 - 4x( x3 + 1 ) ≥ 0

<=> 4x4 - 4x2 + 1 - 4x4 - 4x ≥  0

<=> -4x2 - 4x + 1 ≥ 0

<=> \(\frac{-1-\sqrt{2}}{2}\le x\le\frac{-1+\sqrt{2}}{2}\)

Vì x nguyên => x ∈ { -1 ; 0 } 

+) Với x = -1 (*) trở thành -y2 + y = 0 <=> y( 1 - y ) = 0 <=> y = 0 (tm) hoặc y = 1 (tm)

+) Với x = 0 (*) trở thành -y + 1 = 0 <=> y = 1 (tm)

Vậy ( x ; y ) = { ( -1 ; 0 ) , ( -1 ; 1 ) , ( 0 ; 1 ) }

23 tháng 6 2021

cậu ơi có thể giải bài này mà ko dùng denta đc ko ?

16 tháng 1 2019

\(Giải.\)

\(x^2-2y^2=1\Leftrightarrow x^2-1=2y^2\Leftrightarrow\left(x+1\right)\left(x-1\right)=2y^2\left(chẵn\right)\)

Dễ thấy: x+1-(x-1)=2 nên 2 số trên cùng chẵn hoặc cùng lẻ=> 2 số trên cùng chẵn

=> 2y2 chia hết cho 4=>y2 chia hết cho 2

=> y chẵn =>y=2=>x2-8=1=>x=3 (thỏa mãn)

Vậy chỉ có duy nhất 1 cặp: (x,y)=(3;2) thỏa mãn

16 tháng 1 2019

Dễ thấy: x+1-(x-1)=2 nên 2 số trên cùng chẵn hoặc cùng lẻ=> 2 số trên cùng chẵn

=> 2y2 chia hết cho 4=>y2 chia hết cho 2

=> y chẵn =>y=2=>x2-8=1=>x=3 (thỏa mãn)

Vậy chỉ có duy nhất 1 cặp: (x,y)=(3;2) thỏa mãn

5 tháng 3 2018

lai them 1 dong minh ban oi sao ko de anh shinichi luon

5 tháng 3 2018

\(x^2+x+3=y^2\)

<=> 4 ( x2+x+3) = 4y2

<=> 4x2+4x+12=4y2

<=> 4x2+4x+1+11-4y2=0

<=> (2x+1)2-4y2= -11

<=> ( 2x +1 -2y) (2x+1+2y)=-11

Vì x,y thuộc Z nên 2x+1-2y và 2x+1+2y thuộc Z 

=> 2x+1-2y thuộc Ư(11) và 2x +1+2y thuộc Ư(11)

Mà Ư(11)= { 1;-1;11;-11}

Ta có:

TH1: \(\begin{cases}2x+1-2y=1\\2x+1+2y=-11\end{cases}=>2x+1-2y+2x+1+2y=1+\left(-11\right)< =>4x+1=-10\)

                                                                                                                                        < => x=\(\frac{-11}{4}\)( Không là số nguyên nên loại)

TH2: \(\hept{\begin{cases}2x+1-2y=-1\left(1\right)\\2x+1+2y=11\end{cases}=>2x+1-2y+2x+1+2y=-1+11}\)

<=> 4x+2=10 <=> x= 2 ( Là số nguyên )  

Thay x=2 vào (1) ta có 2.2+1-2y=-1 <=> y= 3 ( là số nguyên )

TH3: \(\hept{\begin{cases}2x+1-2y=11\\2x+1+2y=-1\end{cases}}\)

Th4\(\hept{\begin{cases}2x+1-2y=-11\\2x+1+2y=1\end{cases}}\)

Trường hợp 3 và 4 bạn tự tính nhé!! Nếu x, y là số nguyên thì chọn , còn ko là số nguyên thì loại nhé!!

Học tốt ạ

9 tháng 1 2018

x+y+xy=2

<=>x(y+1)+(y+1)=2+1

<=>(x+1)(y+1)=3

Ta có bảng:

x+11-1
y+13-3
x0-2
y2-4

Vậy các cặp (x;y) là (0;2);(-2;-4)

 

24 tháng 3 2018

ST còn thiếu hai trường hợp là x=2 y=0 hoặc x=-4 y=-2

11 tháng 3 2019

Truy cập link để nhận thẻ cào 50k free :

http://123link.vip/7K2YSHxh

Nhanh không cả hết !

4 tháng 10 2020

Ta có: \(x-y=x^2+xy+y^2\Rightarrow x^2+\left(y-1\right)x+\left(y^2+y\right)=0\)

Coi phương trình trên là phương trình bậc hai theo ẩn x thì \(\Delta=\left(y-1\right)^2-4\left(y^2+y\right)=-3y^2-6y+1\)

Để phương trình có nghiệm thì \(\Delta\ge0\)hay \(-3y^2-6y+1\ge0\Rightarrow\frac{-3-2\sqrt{3}}{3}\le y\le\frac{-3+2\sqrt{3}}{3}\)

Mà y là số nguyên không âm nên y = 0

Thay y = 0 vào phương trình, ta được: \(x=x^2\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy (x, y) = { (0; 0); (1; 0) }