Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x^2+5y^2+4xy=2023$
$\Leftrightarrow (x^2+4y^2+4xy)+y^2=2023$
$\Leftrightarrow (x+2y)^2+y^2=2023$
Ta biết rằng 1 scp khi chia cho $4$ dư $0$ hoặc $1$
Tức là $(x+2y)^2\equiv 0,1\pmod 4$ và $y^2\equiv 0,1\pmod 4$
$\Rightarrow (x+2y)^2+y^2\equiv 0,1,2\pmod 4$
Mà $2023\equiv 3\pmod 4$
Do đó không tồn tại $x,y$ nguyên để $(x+2y)^2+y^2=2023$
x^2 +5y^2 -4xy +2x +4 =0
x^2 +4y^2 -4xy +y^2 +4y+4 +2x -4y =0
(x -2y)^2 +2(x-2y)+(y+2)^2 =0
(x-2y+1)^2 +(y+2)^2 =1
do x,y nguyên nên x-2y+1; y+2 nguyên
mà (x-2y+1)^2 ;(y+2)^2 lơn hơn hoặc bằng 0 với mọi x,y
nên ta có 2TH
TH1: (x-2y+1)^2 =1 ;(y+2)^2 =0
TH2: (x-2y+1)^2 =0 ;(y+2)^2 =1
bạn tự giải doạn cuối nhé
k cho mình nhé
\(x^2-4xy+4y^2+y^2+2xy+1-4\)
\(\left(x-2y\right)^2+\left(y+1\right)^2-4\) > -4
Dấu = xảy ra khi \(\hept{\begin{cases}x-2y=0\\y+1=0\end{cases}< =>\hept{\begin{cases}x=-2\\y=-1\end{cases}}}\)
Truy cập link để nhận thẻ cào 50k free :
http://123link.vip/7K2YSHxh
Nhanh không cả hết !
Ta có: \(x-y=x^2+xy+y^2\Rightarrow x^2+\left(y-1\right)x+\left(y^2+y\right)=0\)
Coi phương trình trên là phương trình bậc hai theo ẩn x thì \(\Delta=\left(y-1\right)^2-4\left(y^2+y\right)=-3y^2-6y+1\)
Để phương trình có nghiệm thì \(\Delta\ge0\)hay \(-3y^2-6y+1\ge0\Rightarrow\frac{-3-2\sqrt{3}}{3}\le y\le\frac{-3+2\sqrt{3}}{3}\)
Mà y là số nguyên không âm nên y = 0
Thay y = 0 vào phương trình, ta được: \(x=x^2\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy (x, y) = { (0; 0); (1; 0) }
Bài 1 :
Phương trình <=> 2x . x2 = ( 3y + 1 ) 2 + 15
Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)
\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)
( Vì số chính phương chia 3 dư 0 hoặc 1 )
\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)
Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)
Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0
Vậy ta có các trường hợp:
\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)
\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)
Vậy ( x ; y ) =( 2 ; 0 )
Bài 3:
Giả sử \(5^p-2^p=a^m\) \(\left(a;m\inℕ,a,m\ge2\right)\)
Với \(p=2\Rightarrow a^m=21\left(l\right)\)
Với \(p=3\Rightarrow a^m=117\left(l\right)\)
Với \(p>3\)nên p lẻ, ta có
\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\) \(\left(k\inℕ,k\ge2\right)\)
Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)
\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)
Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)
Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý
\(\rightarrowĐPCM\)
Ta có: \(x^2+2y^2+3xy+3x+5y=15\)
\(\Leftrightarrow x^2+2y^2+3xy+3x+5y+2=17\)
\(\Leftrightarrow\left(x^2+xy+2x\right)+\left(2xy+2y^2+4y\right)+\left(x+y+2\right)=17\)
\(\Leftrightarrow\left(x+y+2\right)\left(x+2y+1\right)=17=1.17=17.1=\left(-1\right)\left(-17\right)=\left(-17\right)\left(-1\right)\)
Thế vô rồi tìm ra nha bạn!
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)=4\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)
\(\Rightarrow\left(y+1\right)^2\le4\Rightarrow\left[{}\begin{matrix}\left(y+1\right)^2=0\\\left(y+1\right)^2=4\end{matrix}\right.\)
\(\Rightarrow y=\left\{-1;-3;1\right\}\)
Thế vào pt ban đầu tìm x nguyên tương ứng
\(x^2+5y^2+2y-4xy-3=0\left(1\right)\\ \Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\\ \Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)
Ta có: \(\left(x-2y\right)^2+\left(y+1\right)^2=4\ge\left(y+1\right)^2\)
Mà \(y\in Z\Rightarrow\left(y+1\right)^2\in Z\Rightarrow\left(y+1\right)^2\in\left\{0;1;4\right\}\)
Với \(\left(y+1\right)^2=0\Rightarrow y+1=0\Rightarrow y=-1\)
Thay y=-1 vào pt (1) ta tìm được \(\left\{{}\begin{matrix}x=-4\\x=0\end{matrix}\right.\)
Với \(\left(y+1\right)^2=1\Rightarrow\left[{}\begin{matrix}y+1=1\\y+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=0\\y=-2\end{matrix}\right.\)
Thay y=0 vào pt (1) ta không tìm được x nguyên
Thay y=-2 vào pt (1) ta không tìm được x nguyên
Với \(\left(y+1\right)^2=4\Rightarrow\left[{}\begin{matrix}y+1=-2\\y+1=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=-3\\y=1\end{matrix}\right.\)
Thay y=-3 vào pt (1) tìm được \(x=-6\)
Thay y=1 vào pt (1) tìm được \(x=2\)
\(x^2+5y^2+2y-4xy-3=0.\)
\(\Rightarrow x^2-4xy+4y^2+y^2+2y-3=0\)
\(\Rightarrow\left(x-2y\right)^2+\left(y+1\right)^2-4=0\)
Vậy cặp số x,y nhỏ nhất thỏa mãn là \(\hept{\begin{cases}x-2y=0\\y+1=0\end{cases}\Rightarrow\hept{\begin{cases}x-2y=0\\y=-1\end{cases}\Rightarrow}\hept{\begin{cases}x+2=0\\y=-1\end{cases}}}\)
\(\Rightarrow x=-2;y=-1\)
\(x^2+5y^2+2y-4xy-3=0\)
=> \(\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\)
=> \(\left(x-2y\right)^2+\left(y+1\right)^2-2^2=0\)
=> \(\left(x-2y\right)^2+\left(y+1-2\right)\left(y+1+2\right)=0\)
=> \(\left(x-2y\right)^2+\left(y-1\right)\left(y+3\right)=0\)
Mà \(\left(x-2y\right)^2 \ge 0 \forall x\)
=> \(\left(y-1\right)\left(y+3\right)\le0\) Mặt khác \(y-1 < y+3 \)
=> \(\hept{\begin{cases}y-1\le0\\y+3\ge0\end{cases}}\)=> \(-3\le y\le1\) mà y nhỏ nhất
=> \(y=-3\)
Thay vào biểu thức, ta có \(\left(x+6\right)^2+\left(-3-1\right)\left(-3+3\right)=0\) => \(\left(x+6\right)^2=0\) => \(x+6=0\) => \(x=-6\)
Vậy x=-6 , y=-3