) Cho (O;R) và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA; MB với đường tròn (A,B là tiếp điểm). MO cắt AB tại H. Vẽ đường kính AC của đường tròn, MC cắt đường tròn tại điểm thứ hai là N.a) Chứng minh MO vuông góc với AB b) Gọi I là trung điểm của NC, OI cắt AB tại K. Chứng minh OI.OK = R2 và KC là tiếp tuyến của...
Đọc tiếp
) Cho (O;R) và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA; MB với đường tròn (A,B là tiếp điểm). MO cắt AB tại H. Vẽ đường kính AC của đường tròn, MC cắt đường tròn tại điểm thứ hai là N.
a) Chứng minh MO vuông góc với AB
b) Gọi I là trung điểm của NC, OI cắt AB tại K. Chứng minh OI.OK = R2 và KC là tiếp tuyến của (O)
a: Xét (O) có
MA,MB là các tiếp tuyến
Do đó; MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OM là đường trung trực của AB
=>MO\(\perp\)AB tại H và H là trung điểm của AB
b: Ta có: ΔONC cân tại O
mà OI là đường trung tuyến
nên OI\(\perp\)NC tại I
Xét ΔOAM vuông tại A có AH là đường cao
nên \(OH\cdot OM=OA^2\)
=>\(OH\cdot OM=R^2\)
Xét ΔOIM vuông tại I và ΔOHK vuông tại H có
\(\widehat{IOM}\) chung
Do đó: ΔOIM đồng dạng với ΔOHK
=>\(\dfrac{OI}{OH}=\dfrac{OM}{OK}\)
=>\(OI\cdot OK=OH\cdot OM=R^2\)
=>\(OI\cdot OK=OC\cdot OC\)
=>\(\dfrac{OI}{OC}=\dfrac{OC}{OK}\)
Xét ΔOIC và ΔOCK có
\(\dfrac{OI}{OC}=\dfrac{OC}{OK}\)
\(\widehat{IOC}\) chung
Do đó: ΔOIC đồng dạng với ΔOCK
=>\(\widehat{OIC}=\widehat{OCK}\)
=>\(\widehat{OCK}=90^0\)
=>KC là tiếp tuyến của (O)
thank bro