K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho đường tròn (O) bán kính R = 2 cm. Điểm A nằm ngoài đường tròn. Từ A vẽ các tiếp tuyến AB,AC với đường tròn (B,C là các tiếp điểm). AO cắt BC tại D.  ( VẼ HÌNH HỘ MÌNH )                                                                                               a) Cmr 4 điểm A,B,O,C cùng thuộc 1 đường tròn và OA là trung trực của BC (Ý 1 CM THEO 2 TAM GIÁC NỘI TIẾP, KHI CM NÊU RÕ NHỮNG DỮ KIỆN ĐỀ BÀI CHO)                   ...
Đọc tiếp

Cho đường tròn (O) bán kính R = 2 cm. Điểm A nằm ngoài đường tròn. Từ A vẽ các tiếp tuyến AB,AC với đường tròn (B,C là các tiếp điểm). AO cắt BC tại D.  ( VẼ HÌNH HỘ MÌNH )                                                                                               a) Cmr 4 điểm A,B,O,C cùng thuộc 1 đường tròn và OA là trung trực của BC (Ý 1 CM THEO 2 TAM GIÁC NỘI TIẾP, KHI CM NÊU RÕ NHỮNG DỮ KIỆN ĐỀ BÀI CHO)                                                                                              b) Vẽ đk BE của đường tròn (O), AE cắt đt (O) tại điểm thứ hai F. Gọi G là trung điểm của EF. Đt OG cắt đt BC tại H. Tính tích OA.OD và cm OA.OD=OG.OH                                                                                                     c) CM EH là tiếp tuyến của đt (O)

1
Cho đường tròn (O) bán kính R = 2 cm. Điểm A nằm ngoài đường tròn. Từ A vẽ các tiếp tuyến AB,AC với đường tròn (B,C là các tiếp điểm). AO cắt BC tại D.  ( VẼ HÌNH HỘ MÌNH )                                                                                               a) Cmr 4 điểm A,B,O,C cùng thuộc 1 đường tròn và OA là trung trực của BC (Ý 1 CM THEO 2 TAM GIÁC NỘI TIẾP, KHI CM NÊU RÕ NHỮNG DỮ KIỆN ĐỀ BÀI CHO)                   ...
Đọc tiếp

Cho đường tròn (O) bán kính R = 2 cm. Điểm A nằm ngoài đường tròn. Từ A vẽ các tiếp tuyến AB,AC với đường tròn (B,C là các tiếp điểm). AO cắt BC tại D.  ( VẼ HÌNH HỘ MÌNH )                                                                                               a) Cmr 4 điểm A,B,O,C cùng thuộc 1 đường tròn và OA là trung trực của BC (Ý 1 CM THEO 2 TAM GIÁC NỘI TIẾP, KHI CM NÊU RÕ NHỮNG DỮ KIỆN ĐỀ BÀI CHO)                                                                                              b) Vẽ đk BE của đường tròn (O), AE cắt đt (O) tại điểm thứ hai F. Gọi G là trung điểm của EF. Đt OG cắt đt BC tại H. Tính tích OA.OD và cm OA.OD=OG.OH                                                                                                     c) CM EH là tiếp tuyến của đt (O)

1
31 tháng 12 2023

Bổ sung đề; OA cắt BC tại D

a: Ta có: ΔOBA vuông tại B

=>B nằm trên đường tròn đường kính OA(1)

Ta có: ΔOCA vuông tại C

=>C nằm trên đường tròn đường kính OA(2)

Từ (1) và (2) suy ra B,C,O,A cùng thuộc đường tròn đường kính OA

Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(3)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(4)

Từ (3) và (4) suy ra OA là đường trung trực của BC

b: OA là đường trung trực của BC

Do đó: OA\(\perp\)BC tại D và D là trung điểm của BC

Xét ΔOBA vuông tại B có BD là đường cao

nên \(OD\cdot OA=OB^2=R^2\)

Ta có: ΔOEF cân tại O

mà OG là đường trung tuyến

nên OG\(\perp\)EF tại G

Xét ΔOGA vuông tại G và ΔODH vuông tại D có

góc GOA chung

Do đó: ΔOGA đồng dạng với ΔODH

=>\(\dfrac{OG}{OD}=\dfrac{OA}{OH}\)

=>\(OG\cdot OH=OA\cdot OD\)

c: Ta có: \(OG\cdot OH=OA\cdot OD\)

\(OA\cdot OD=R^2\)

Do đó: \(OG\cdot OH=R^2=OE^2\)

=>\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)

Xét ΔOGE và ΔOEH có

\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)

\(\widehat{GOE}\) chung

Do đó: ΔOGE đồng dạng với ΔOEH

=>\(\widehat{OGE}=\widehat{OEH}\)

=>\(\widehat{OEH}=90^0\)

=>HE là tiếp tuyến của (O)

31 tháng 12 2023

đợi mãi mới thấy bạn trả lời

 

31 tháng 12 2023

Hình khó nhìn quá bạn vẽ lại cho mình với

 

a: góc KOA+góc BOA=90 độ

góc KAO+góc COA=90 độ

mà góc BOA=góc COA

nên góc KOA=góc KAO

=>ΔKAO cân tại K

b: Xét ΔOBA vuông tại B có sin BAO=OB/OA=1/2

nên góc BAO=30 độ

=>góc BOA=60 độ

Xét ΔOBI có OB=OI và góc BOI=60 độ

nên ΔOBI đều

=>OI=OB=1/2OA=R

=>I là trung điểm của OA

ΔKAO cân tại K

mà KI là trung tuyến

nên KI vuông góc với OI

=>KI là tiếp tuyến của (O)

a: Xét tứ giácc ABOC có

góc OBA+góc OCA=180 độ

nen ABOC là tứ giác nội tiếp

b: Xét ΔCAO vuông tại C và ΔCDE vuông tại C có

góc CAO=góc CDE

Do đó: ΔCAO đồng dạng vơi ΔCDE

=>CA/CD=CO/CE

=>CA/CO=CD/CE

Xét ΔCAD và ΔCOE có

CA/CO=CD/CE

góc ACD=góc OCE
Do đo: ΔCAD đồng dạng với ΔCOE

16 tháng 12 2021

undefined

câu c thì cơ bản là tui chứng minh hai tam giác bằng nhau (c-c-c), xong rồi tui suy ra hai góc bằng nhau

a: Xét (O) có

AB,AC là tiếp tuyến

nên AB=AC

=>ΔABC cân tại A

mà OB=OC

nên OA là trung trực của BC

b: ΔOEF cân tại O

mà OG là trung tuyến

nên OG vuông góc với EF

Xét ΔAGO vuông tại G và ΔHDO vuông tại D có

góc AOG chung

Do đó: ΔAGO đồng dạng với ΔHDO

c: ΔAGO đồng dạng vơi ΔHDO

=>OA/OH=OG/OD

=>OA*OD=OH*OG

=>OH*OG=OE^2

=>ΔHEO vuông tại E

=>HE là tiếp tuyên của (O)

Giải giúp mình các bài này với ạ!1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = ACa. CM : Tam giác OAB = tam giác OACb. CM : AC là tiếp tuyến của đường tròn tâm Oc. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không...
Đọc tiếp

Giải giúp mình các bài này với ạ!

1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = AC
a. CM : Tam giác OAB = tam giác OAC
b. CM : AC là tiếp tuyến của đường tròn tâm O
c. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm

2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không thẳng hàng). Tiếp tuyến của O tại A cắt tia phân giác của góc AOB tại C.
a. So sánh tam giác OAC và tam giác OBC.
b. CM : BC là tiếp tuyến của đường tròn tâm O

3) Cho đường tròn tâm O, bán kính R. Lấy điểm A cách O một khoảng = 2R. Từ A vẽ 2 tiếp tuyến AB, AC (B,C là tiếp điểm). OA cắt đường tròn tâm O tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a. CM : OK // AB
b. CM : tam giác OAK là tam giác cân
c. CM : KI là tiếp tuyến của đường tròn tâm O.

0