K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc KOA+góc BOA=90 độ

góc KAO+góc COA=90 độ

mà góc BOA=góc COA

nên góc KOA=góc KAO

=>ΔKAO cân tại K

b: Xét ΔOBA vuông tại B có sin BAO=OB/OA=1/2

nên góc BAO=30 độ

=>góc BOA=60 độ

Xét ΔOBI có OB=OI và góc BOI=60 độ

nên ΔOBI đều

=>OI=OB=1/2OA=R

=>I là trung điểm của OA

ΔKAO cân tại K

mà KI là trung tuyến

nên KI vuông góc với OI

=>KI là tiếp tuyến của (O)

Cho đường tròn (O) bán kính R = 2 cm. Điểm A nằm ngoài đường tròn. Từ A vẽ các tiếp tuyến AB,AC với đường tròn (B,C là các tiếp điểm). AO cắt BC tại D.  ( VẼ HÌNH HỘ MÌNH )                                                                                               a) Cmr 4 điểm A,B,O,C cùng thuộc 1 đường tròn và OA là trung trực của BC (Ý 1 CM THEO 2 TAM GIÁC NỘI TIẾP, KHI CM NÊU RÕ NHỮNG DỮ KIỆN ĐỀ BÀI CHO)                   ...
Đọc tiếp

Cho đường tròn (O) bán kính R = 2 cm. Điểm A nằm ngoài đường tròn. Từ A vẽ các tiếp tuyến AB,AC với đường tròn (B,C là các tiếp điểm). AO cắt BC tại D.  ( VẼ HÌNH HỘ MÌNH )                                                                                               a) Cmr 4 điểm A,B,O,C cùng thuộc 1 đường tròn và OA là trung trực của BC (Ý 1 CM THEO 2 TAM GIÁC NỘI TIẾP, KHI CM NÊU RÕ NHỮNG DỮ KIỆN ĐỀ BÀI CHO)                                                                                              b) Vẽ đk BE của đường tròn (O), AE cắt đt (O) tại điểm thứ hai F. Gọi G là trung điểm của EF. Đt OG cắt đt BC tại H. Tính tích OA.OD và cm OA.OD=OG.OH                                                                                                     c) CM EH là tiếp tuyến của đt (O)

1
31 tháng 12 2023

Bổ sung đề; OA cắt BC tại D

a: Ta có: ΔOBA vuông tại B

=>B nằm trên đường tròn đường kính OA(1)

Ta có: ΔOCA vuông tại C

=>C nằm trên đường tròn đường kính OA(2)

Từ (1) và (2) suy ra B,C,O,A cùng thuộc đường tròn đường kính OA

Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(3)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(4)

Từ (3) và (4) suy ra OA là đường trung trực của BC

b: OA là đường trung trực của BC

Do đó: OA\(\perp\)BC tại D và D là trung điểm của BC

Xét ΔOBA vuông tại B có BD là đường cao

nên \(OD\cdot OA=OB^2=R^2\)

Ta có: ΔOEF cân tại O

mà OG là đường trung tuyến

nên OG\(\perp\)EF tại G

Xét ΔOGA vuông tại G và ΔODH vuông tại D có

góc GOA chung

Do đó: ΔOGA đồng dạng với ΔODH

=>\(\dfrac{OG}{OD}=\dfrac{OA}{OH}\)

=>\(OG\cdot OH=OA\cdot OD\)

c: Ta có: \(OG\cdot OH=OA\cdot OD\)

\(OA\cdot OD=R^2\)

Do đó: \(OG\cdot OH=R^2=OE^2\)

=>\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)

Xét ΔOGE và ΔOEH có

\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)

\(\widehat{GOE}\) chung

Do đó: ΔOGE đồng dạng với ΔOEH

=>\(\widehat{OGE}=\widehat{OEH}\)

=>\(\widehat{OEH}=90^0\)

=>HE là tiếp tuyến của (O)

31 tháng 12 2023

đợi mãi mới thấy bạn trả lời

 

Cho đường tròn (O) bán kính R = 2 cm. Điểm A nằm ngoài đường tròn. Từ A vẽ các tiếp tuyến AB,AC với đường tròn (B,C là các tiếp điểm). AO cắt BC tại D.  ( VẼ HÌNH HỘ MÌNH )                                                                                               a) Cmr 4 điểm A,B,O,C cùng thuộc 1 đường tròn và OA là trung trực của BC (Ý 1 CM THEO 2 TAM GIÁC NỘI TIẾP, KHI CM NÊU RÕ NHỮNG DỮ KIỆN ĐỀ BÀI CHO)                   ...
Đọc tiếp

Cho đường tròn (O) bán kính R = 2 cm. Điểm A nằm ngoài đường tròn. Từ A vẽ các tiếp tuyến AB,AC với đường tròn (B,C là các tiếp điểm). AO cắt BC tại D.  ( VẼ HÌNH HỘ MÌNH )                                                                                               a) Cmr 4 điểm A,B,O,C cùng thuộc 1 đường tròn và OA là trung trực của BC (Ý 1 CM THEO 2 TAM GIÁC NỘI TIẾP, KHI CM NÊU RÕ NHỮNG DỮ KIỆN ĐỀ BÀI CHO)                                                                                              b) Vẽ đk BE của đường tròn (O), AE cắt đt (O) tại điểm thứ hai F. Gọi G là trung điểm của EF. Đt OG cắt đt BC tại H. Tính tích OA.OD và cm OA.OD=OG.OH                                                                                                     c) CM EH là tiếp tuyến của đt (O)

1
2 tháng 2 2022

đây là đề học sinh giỏi của tỉnh hải dương năm 2020-2021 ạ

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

22 tháng 12 2023

a: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AO là đường trung trực của BC

b: AO là đường trung trực của BC

=>AO\(\perp\)BC tại H và H là trung điểm của BC

Xét (O) có

\(\widehat{ABE}\) là góc tạo bởi tiếp tuyến BA và dây cung BE

\(\widehat{EDB}\) là góc nội tiếp chắn cung BE

Do đó: \(\widehat{ABE}=\widehat{EDB}\)

Xét ΔABE và ΔADB có

\(\widehat{ABE}=\widehat{ADB}\)

\(\widehat{BAE}\) chung

Do đó: ΔABE đồng dạng với ΔADB

=>\(\dfrac{AB}{AD}=\dfrac{AE}{AB}\)

=>\(AB^2=AD\cdot AE\)

c: Xét (O) có

MB,ME là các tiếp tuyến

Do đó: MB=ME

Xét (O) có

NE,NC là các tiếp tuyến

Do đó: NE=NC

Chu vi tam giác AMN là:

\(AM+MN+AN\)

\(=AM+ME+EN+AN\)

\(=AM+MB+AN+NC\)

=AB+AC

6 tháng 12 2017

Câu c.

Gọi K là trung điểm của BH

Chỉ ra K là trực tâm của tam giác BMI

Chứng minh MK//EI

Chứng minh M là trung điểm của BE (t.c đường trung bình)

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0