Cho tam giác ABC vuông tạo A AH vuông góc với BC. D và E lần lượt là hình chiếu của H trên AB và AC. Chứng minh
A.AB^2\AC^2=BH\HC
B. DE^3=BD*BC*CE
C ( AB\AC)^3=BD\CE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
b: Xét ΔAMD và ΔANB có
AM=AN
MD=NB
AD=AB
Do đó: ΔAMD=ΔANB
1) Xét tứ giác AEHD có
\(\widehat{EAD}=90^0\)
\(\widehat{AEH}=90^0\)
\(\widehat{ADH}=90^0\)
Do đó: AEHD là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Suy ra: AH=ED(Hai đường chéo của hình chữ nhật AEHD)
Ta có: AEHD là hình chữ nhật(cmt)
nên HE=AD(Hai cạnh đối)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:
\(HD^2=AD\cdot DB\)
mà AD=HE(cmt)
nên \(HD^2=HE\cdot DB\)
2) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:
\(AD\cdot AB=AH^2\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:
\(AE\cdot AC=AH^2\)
Ta có: \(AD\cdot AB+AE\cdot AC\)
\(=AH^2+AH^2\)
\(=2AH^2\)
\(=2\cdot DE^2\)(đpcm)
3)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có HA là đường cao ứng với cạnh huyền CB, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\dfrac{BH}{CH}=\dfrac{AB^2}{BC}\cdot\dfrac{BC}{AC^2}=\dfrac{AB^2}{AC^2}\)(đpcm)
3b)
Ta có tg BNK vuông tại K ->BN>BK
Ta có IK=MN(tính chất đoạn chắn)
Ta có : BC+MN=BK+KC+MN=BK+BI+IK=2BK
Vì BK<BN->2BK<2BN->BN>BK/2->BN>BC+MN/2
góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
=>AH=DE
BD*CE*BC
=BH^2/BA*CH^2/CA*BC
=AH^4/AH=AH^3
=DE^3
Bài 2:
a: Xét ΔABC vuông tại B có
\(AB^2+BC^2=AC^2\)
hay BC=20(cm)
Xét ΔABC vuông tại B có BH là đường cao ứng với cạnh huyền AC
nên \(\left\{{}\begin{matrix}BA^2=AH\cdot AC\\BC^2=CH\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=9\left(cm\right)\\CH=16\left(cm\right)\end{matrix}\right.\)
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>HB=HC
b: Xét ΔHDB vuông tại D và ΔHEC vuông tại E có
HB=HC
góc B=góc C
=>ΔHDB=ΔHEC
=>BD=CE