cho các số thực dương X,y thỏa mãn x<y và\(3x^2\)+\(2y^2\)=5xy.Tính giá trị của biểu thức S=\(\dfrac{y+2x}{y-2x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Ta có
Khi đó
Vậy giá trị nhỏ nhất của biểu thức P là 3 + 2 2
Đáp án B
Đặt log 6 x = log 9 x = log 4 2 x + 2 y = t ⇒ x = 6 t y = 9 t và 2 x + 2 y = 4 t .
⇒ 2.6 y + 2.9 t = 4 t ⇔ 2 3 t 2 − 2. 2 3 t − 2 = 0 ⇔ 2 3 t = 1 + 3 ⇒ x y = 1 + 3
Đáp án B
Ta có ln x y = ln x + ln y ≥ ln x 2 + y
⇔ x y ≥ x 2 + y ⇔ y x - 1 ≥ x 2
Vì x = 1 không thỏa và y > 0 => x > 1
⇒ P = x y ≥ x 2 x - 1 + x = f x
X é t h à m s ố f x = x 2 x - 1 + x v ớ i x > 1
⇒ f ' x = x 2 - 2 x x - 1 2 + x = 2 x 2 - 4 x + 1 x - 1 2
⇒ f ' x = 0 ⇔ x = 2 + 2 2 v ì x > 1
Dựa vào bảng biến thiên của hàm số f(x) suy ra
⇒ M i n P = M i n x > 1 f x = f 1 = 3 + 2 2 .
Đáp án B
Ta có ln x y = ln x + ln y ≥ ln x 2 + y ⇔ x y ≥ x 2 + y ⇔ y x − 1 ≥ x 2
Vì x = 1 không thỏa và y > 0 ⇒ x > 1 ⇒ P = x y ≥ x 2 x − 1 + x = f x
Xét hàm số f x = x 2 x − 1 + x với x > 1
⇒ f ' x = x 2 − 2 x x − 1 2 + x = 2 x 2 − 4 x + 1 x − 1 2 → f ' x = 0 ⇔ x = 2 + 2 2 vì x > 1
Dựa vào bảng biến thiên của hàm số f x suy ra ⇒ M i n P = M in x > 1 f x = f 1 = 3 + 2 2
\(3x^2+2y^2=5xy\)
\(\Leftrightarrow3x^2+2y^2-5xy=0\)
\(\Leftrightarrow2\left(x^2-2xy+y^2\right)+x^2-xy=0\)
\(\Leftrightarrow2\left(x-y\right)^2+x\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left[2\left(x-y\right)+x\right]=0\)
\(\Leftrightarrow\left(x-y\right)\left(3x-2y\right)=0\)
\(\Leftrightarrow3x-2y=0\Leftrightarrow x=\dfrac{2y}{3}\) Thay vào S
\(\Rightarrow S=\dfrac{y+\dfrac{4y}{3}}{y-\dfrac{4y}{3}}=-7\)