giúp em 7 bài này với ạ:(
sáng mai phải nộp bài rồi ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ơi, làm như vậy thì quá ngắn rồi ạ, với lại bạn làm thiếu mất đề bài của mình rồi
Bài 16:
a: Ta có: \(P=\left(\dfrac{\sqrt{a}+1}{\sqrt{ab}+1}+\dfrac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}-1\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{ab}+1}-\dfrac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)\)
\(=\dfrac{a\sqrt{b}-\sqrt{a}+\sqrt{ab}-1+ab+\sqrt{ab}+a\sqrt{b}+\sqrt{a}-ab+1}{\left(\sqrt{ab}+1\right)\left(\sqrt{ab}-1\right)}:\dfrac{a\sqrt{b}-\sqrt{a}+\sqrt{ab}-1-ab-\sqrt{ab}-a\sqrt{b}-\sqrt{a}+ab-1}{\left(\sqrt{ab}+1\right)\left(\sqrt{ab}-1\right)}\)
\(=\dfrac{2a\sqrt{b}+2\sqrt{ab}}{-2\sqrt{a}-2}\)
\(=\dfrac{2\sqrt{ab}\left(\sqrt{a}+1\right)}{-2\left(\sqrt{a}+1\right)}\)
\(=-\sqrt{ab}\)
Gọi tia đối của tia AB là AE
=>AD là phân giác của \(\widehat{EAC}\)
Xét ΔABC có \(\widehat{EAC}\) là góc ngoài tại đỉnh A
nên \(\widehat{EAC}=\widehat{ABC}+\widehat{ACB}=80^0\)
AD là phân giác của góc EAC
=>\(\widehat{EAD}=\widehat{CAD}=\dfrac{\widehat{EAC}}{2}=\dfrac{80^0}{2}=40^0\)
\(\widehat{DAC}=\widehat{ACB}\left(=40^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên AD//BC
=> 1 - 3 . X=x - 7 hoặc 1 - 3 . X =-(x-7)
*1 - 3x =x - 7 *1 - 3x = -(x - 7 )
8 =x + 3x 1 - 3x = -x + 7
8 =4x -3x+x =7-1
8 : 4 =x -2x =6
2 = x x = 6:(-2)
=>x = 2 x = -3
vậy x \(\in\){2; -3}
đúng + x =1
x =1 -đúng
x = thích
\(A=\left(-1\right)+2-3+\left(-4\right)+5-6+\left(-7\right)+8-9\)
\(=2-1-3+5-4-6+8-7-9\)
\(=\left(2-1-3\right)+\left(5-4-6\right)+\left(8-7-9\right)\)
\(=\left(-2\right)+\left(-5\right)+\left(-8\right)\)
\(=-15\)
Bài 6:
Xét ΔOAC vuông tại A và ΔOBD vuông tại B có
OA=OB
\(\widehat{AOC}=\widehat{BOD}\)(hai góc đối đỉnh)
Do đó: ΔOAC=ΔOBD
=>OC=OD
Bài 7:
a: Ta có: \(\widehat{DAB}+\widehat{BAC}+\widehat{CAE}=180^0\)
=>\(\widehat{DAB}+\widehat{CAE}+90^0=180^0\)
=>\(\widehat{DAB}+\widehat{CAE}=90^0\)
mà \(\widehat{DAB}+\widehat{DBA}=90^0\)
nên \(\widehat{DBA}=\widehat{CAE}\)
Xét ΔABD vuông tại A và D và ΔCAE vuông tại E có
AB=AC
\(\widehat{DBA}=\widehat{EAC}\)
Do đó: ΔABD=ΔCAE
b: ta có: ΔABD=ΔCAE
=>DB=AE và AD=CE
DB+CE=DA+AE=DE