a) Vẽ các đường thẳng (d1) y=x+2 và (d2) y=-1/2X -1
trên cùng một mặt phẳng tọa độ và chứng minh chúng cắt nhau tại điểm A trên trục hoành.
b) Gọi giao điểm của (d1) và (d2) với trục tung là B và C. Tính các góc của tam giác ABC.
c) Tính chu vi và diện tích của tam giác ABC.
gIÚP TỚ VOII
a:
Phương trình hoành độ giao điểm là:
\(x+2=-\dfrac{1}{2}x-1\)
=>\(x+\dfrac{1}{2}x=-1-2\)
=>1,5x=-3
=>x=-3/1,5=-2
Thay x=-2 vào y=x+2, ta được:
y=-2+2=0
Vậy: (d1) cắt (d2) tại điểm A(-2;0) nằm trên trục hoành
b: Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=x+2=0+2=2\end{matrix}\right.\)
Tọa độ C là:
\(\left\{{}\begin{matrix}x=0\\y=-\dfrac{1}{2}x-1=-\dfrac{1}{2}\cdot0-1=-1\end{matrix}\right.\)
A(-2;0); B(0;2); C(0;-1)
\(AB=\sqrt{\left(0+2\right)^2+\left(2-0\right)^2}=2\sqrt{2}\)
\(AC=\sqrt{\left(0+2\right)^2+\left(-1-0\right)^2}=\sqrt{2^2+\left(-1\right)^2}=\sqrt{5}\)
\(BC=\sqrt{\left(0-0\right)^2+\left(-1-2\right)^2}=\sqrt{0^2+\left(-3\right)^2}=3\)
Xet ΔABC có \(AB^2+AC^2=BC^2\)
nên ΔABC vuông tại A
=>\(\widehat{BAC}=90^0\)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{\sqrt{5}}{3}\)
nên \(\widehat{B}\simeq48^011'\)
Ta có: ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ACB}+48^011'=90^0\)
=>\(\widehat{ACB}=41^049'\)
c: Chu vi tam giác ABC là:
\(C_{ABC}=AB+AC+BC=2\sqrt{2}+\sqrt{5}+3\)
Vì ΔABC vuông tại A
nên \(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot2\sqrt{2}\cdot\sqrt{5}=\sqrt{10}\)