tìm số tự nhiên n nhỏ hơn 30 sao cho \(x=\dfrac{\sqrt{n-1}}{2}\) là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Ta thấy \(S_2=\dfrac{\sqrt{3}+S_1}{1-\sqrt{3}S_1}=\dfrac{\sqrt{3}+1}{1-\sqrt{3}}=\dfrac{\left(1+\sqrt{3}\right)^2}{\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}\)\(=\dfrac{4+2\sqrt{3}}{-2}=-2-\sqrt{3}\)
Từ đó \(S_3=\dfrac{\sqrt{3}+S_2}{1-\sqrt{3}S_2}=\dfrac{\sqrt{3}-2-\sqrt{3}}{1-\sqrt{3}\left(-2-\sqrt{3}\right)}=\dfrac{-2}{4+2\sqrt{3}}=\dfrac{1}{-2-\sqrt{3}}\)
và \(S_4=\dfrac{\sqrt{3}+S_3}{1-\sqrt{3}S_3}=\dfrac{\sqrt{3}+\dfrac{1}{-2-\sqrt{3}}}{1-\dfrac{\sqrt{3}}{-2-\sqrt{3}}}=\dfrac{-2\sqrt{3}-3+1}{-2-\sqrt{3}-\sqrt{3}}=1\)
Đến đây ta thấy \(S_4=S_1\). Cứ tiếp tục làm như trên, ta rút ra được:
\(S_{3k+1}=1\); \(S_{3k+2}=-2-\sqrt{3}\) và \(S_{3k+3}=\dfrac{1}{-2-\sqrt{3}}\), với \(k\inℕ\)
Ta tính số các số thuộc mỗi dạng \(S_{3k+i}\left(i=1,2,3\right)\) từ \(S_1\) đến \(S_{2017}\).
- Số các số hạng có dạng \(S_{3k+1}\) là \(\left(2017-1\right):3+1=673\) số
- Số các số hạng có dạng \(S_{3k+2}\) là \(\left(2015-2\right):3+1=672\) số
- Số các số hạng có dạng \(S_{3k+3}\) là \(\left(2016-3\right):3+1=672\) số
Như thế, tổng S có thể được viết lại thành
\(S=\left(S_1+S_4+...+S_{2017}\right)+\left(S_2+S_5+...+S_{2015}\right)+\left(S_3+S_6+...+S_{2016}\right)\)
\(S=613+612\left(-2-\sqrt{3}\right)+612\left(\dfrac{1}{-2-\sqrt{3}}\right)\)
Tới đây mình lười rút gọn lắm, nhưng ý tưởng làm bài này là như vậy.
Có \(\left(x-\sqrt{x^2+5}\right).\left(y-\sqrt{y^2+5}\right)=5\) (1)
\(\Leftrightarrow\dfrac{\left(x-\sqrt{x^2+5}\right).\left(x+\sqrt{x^2+5}\right)}{x+\sqrt{x^2+5}}.\dfrac{\left(y-\sqrt{y^2+5}\right).\left(y+\sqrt{y^2+5}\right)}{y+\sqrt{y^2+5}}=5\)
\(\Leftrightarrow\left(x+\sqrt{x^2+5}\right).\left(y+\sqrt{y^2+5}\right)=5\) (2)
Từ (1) và (2) ta có \(\left(x-\sqrt{x^2+5}\right).\left(y-\sqrt{y^2+5}\right)=\left(x+\sqrt{x^2+5}\right).\left(y+\sqrt{y^2+5}\right)\)
\(\Leftrightarrow x\sqrt{y^2+5}+y\sqrt{x^2+5}=0\)
\(\Leftrightarrow x^2\left(y^2+5\right)=y^2\left(x^2+5\right)\left(y\le0;x\ge0\right)\)
\(\Leftrightarrow x^2-y^2=0\Leftrightarrow\left[{}\begin{matrix}x=y\left(\text{loại}\right)\\x=-y\left(\text{nhận}\right)\end{matrix}\right.\)
Khi đó M = x3 + y3 = 0
N = x2 + y2 = 2y2
x+[x+1]+[x+2]+...........+[x+30]=1240
[x+x+x+...+x]+(0+1+2+3+...+30)=1240
Từ 0 đến 30 có 31 số lên sẽ có 31 số x
Vậy: x.31+(0+1+2+3+...+30)=1240
x.31+((30+0)x31:2)=1240
x.31+30x31:2=1240
x.31 + 465 =1240
x.31 =1240-465=775
X=775:31
X=25
Vậy x =25
1.2.3........8.9-1.2.3.........8-1.2.3........7.8 2
=1.2.3....8.(9-1-1.2.3....7.8)
=40320.(-40312)
=-1625379840
nhé Nguyễn Trà My
b: =>\(\dfrac{2}{2}+\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{n\left(n+1\right)}=\dfrac{200}{101}\)
=>\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{n\left(n+1\right)}=\dfrac{100}{101}\)
=>1-1/2+1/2-1/3+...+1/n-1/n+1=100/101
=>1-1/(n+1)=100/101
=>1/(n+1)=1/101
=>n+1=101
=>n=100
Đặt A=102+18n-1
=10n-1+18n
=9999...9(n c/số 9)+18n
=9.11111...1(n c/số 1)+9.2n
=9(1111...1(n c/số 1+2n)
mà 111...1(n c/số 1)=n+9q
=>A=9.(9q+n+2n)
=>A=9(9q+3n)
=9.3.(3q+n)
=27(3q+n)
=>\(A⋮27\)
vậy...(đccm)
mấy bài sau dễ òi
bn tự làm nhé
Để \(x=\dfrac{\sqrt{n-1}}{2}\) là số nguyên thì \(\sqrt{n-1}⋮2\)
=>\(n-1=\left(2k\right)^2=4k^2\)(k\(\in\)Z) và n>=1
=>\(n=4k^2+1\)
n<30
=>\(4k^2+1< 30\)
=>\(4k^2< 29\)
=>\(k^2< \dfrac{29}{4}\)
mà k nguyên
nên \(k^2\in\left\{0;1;4\right\}\)
\(n=4k^2+1\)
=>\(n\in\left\{1;5;17\right\}\)