Cho tam giác, trên cạnh AB lấy M sao cho AM = BM, trên cạnh AC lấy N sao cho NC = 2/3 NA, BN cắt MC tại O. biết diện tích hình tam giác ABC là 70cm2. Tính diện tích tam giác BOC.
Chỉ cần kp thôi. Thanks
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
21 tháng 11 2016
Samc=1/3 Sabc
BM=1/3 BC (cùng chiều cao hạ từ A)
Diện tích tâm giác ABM
36*1/3=12 cm2
Samc=36-12=24cm2
Snmc=1/4 Samc
NC=1/4 AC cùng chiều cao hạ từ M)
Diện tích tứ giác ABMN
24*1/4=6 cm2
Diện tích tam giác MNC
12+(24-6)=30 cm2 hoặc 36-6=30 cm2
Đáp số ABMN là 6cm2
MNC là 30 cm2
Hai tam giác ACM và tg BCM có chung đường cao từ C->AB nên
\(\dfrac{S_{ACM}}{S_{BCM}}=\dfrac{AM}{BM}=1\Rightarrow S_{ACM}=S_{BCM}=\dfrac{S_{ABC}}{2}=\dfrac{70}{2}=35cm^2\)
Hai tg BCN và tg ABN có chung đường cao từ B->AC nên
\(\dfrac{S_{BCN}}{S_{ABN}}=\dfrac{CN}{NA}=\dfrac{2}{3}\) mà \(S_{BCN}+S_{ABN}=S_{ABC}=70cm^2\)
\(\Rightarrow S_{BCN}=2x\dfrac{S_{ABC}}{2+3}=2x\dfrac{70}{5}=28cm^2\)
\(\Rightarrow S_{ABN}=S_{ABC}-S_{BCN}=70-28=42cm^2\)
Hai tg AMN và tg BMN có chung đường cao từ N->AB nên
\(\dfrac{S_{AMN}}{S_{BMN}}=\dfrac{AM}{BM}=1\Rightarrow S_{AMN}=S_{BMN}=\dfrac{S_{ABN}}{2}=\dfrac{42}{2}=21cm^2\)
Hai tam giác BMN và tam giác BCN có chung BN nên
\(\dfrac{S_{BMN}}{S_{BCN}}=\) đường cao từ M->BN / đường cao từ C->BN \(=\dfrac{21}{28}=\dfrac{3}{4}\)
Hai tg BOM và tam giác BOC có chung BO nên
\(\dfrac{S_{BOM}}{S_{BOC}}=\) đường cao từ M->BN / đường cao từ C->BN \(=\dfrac{3}{4}\)
Mà \(S_{BOM}+S_{BOC}=S_{BCM}=28cm^2\)
\(\Rightarrow S_{BOC}=4x\dfrac{S_{BCN}}{4+3}=4x\dfrac{28}{7}=16cm^2\)
Sorry!
Mà \(S_{BOM}+S_{BOC}=S_{BCM}=35cm^2\)
\(\Rightarrow S_{BOC}=4x\dfrac{S_{BCM}}{4+3}=4x\dfrac{35}{7}=20cm^2\)