K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2023

Để x + 2y và 2x - y là số hữu tỷ, ta có thể thiết lập hệ phương trình sau:

 

x + 2y = a/b (1)

2x - y = c/d (2)

 

Trong đó a, b, c, d là các số nguyên và b, d khác 0.

 

Từ phương trình (1), ta có x = a/b - 2y. Thay vào phương trình (2), ta có:

 

2(a/b - 2y) - y = c/d

2a/b - 4y - y = c/d

2a/b - 5y = c/d

 

Để 2a/b - 5y là số hữu tỷ, ta cần 5y cũng là số hữu tỷ. Vì vậy, y phải là số hữu tỷ.

 

Tiếp theo, để x = a/b - 2y là số hữu tỷ, ta cần a/b - 2y cũng là số hữu tỷ. Vì y là số hữu tỷ, nên a/b - 2y cũng là số hữu tỷ.

 

Vậy, nếu x + 2y và 2x - y là số hữu tỷ, thì x và y đều là số hữu tỉ.

13 tháng 2 2020

\(\frac{2x+2y-z}{z}=\frac{2x-y+2z}{y}=\frac{-x+2y+2z}{x} \)

=>\(\frac{2x+2y-z}{z}+3=\frac{2x-y+2z}{y}+3=\frac{-x+2y+2z}{x}+3\)

=>\(\frac{2x+2y+2z}{z}=\frac{2x+2y+2z}{y}=\frac{2x+2y+2z}{x}\)

=>\(\frac{x+y+z}{z}=\frac{x+y+z}{y}=\frac{x+y+z}{x}\)

=>\(\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\)

Với \(x+y+z=0\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)

\(\Rightarrow M=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}=\frac{-xyz}{8xyz}=-\frac{1}{8}\)

Với \(x=y=z\)\(\Rightarrow M=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}=\frac{2x.2y.2z}{8xyz}=\frac{8xyz}{8xyz}=1\)

20 tháng 9 2019

a) Ta có: \(\frac{\left(x+y\right)+\left(x-y\right)}{2}=x\)( x + y và x - y là số hữu tỉ nên \(\frac{\left(x+y\right)+\left(x-y\right)}{2}\)là số hữu tỉ hay x là số hữu tỉ)

 \(\frac{\left(x+y\right)-\left(x-y\right)}{2}=y\)( x + y và x - y là số hữu tỉ nên \(\frac{\left(x+y\right)+\left(x-y\right)}{2}\)là số hữu tỉ hay y là số hữu tỉ)

b) x và y có thể là số vô tỉ

VD: \(x=\sqrt{6};y=-\sqrt{6}\)

\(\Rightarrow\hept{\begin{cases}x+y=0\\\frac{x}{y}=-1\end{cases}}\)(đều là số hữu tỉ)

20 tháng 9 2019

a, \(x=\frac{\left(x+y\right)+\left(x-y\right)}{2}\)         ;         \(y=\frac{\left(x+y\right)-\left(x-y\right)}{2}\)

tổng, hiệu của 2 số hữu tỉ là một số hữu tỉ. Thương của một số hữu tỉ với một số hữu tỉ khác 0 cùng là một số hữu tỉ. 

Vậy x,y đều là các số hữu tỉ không thể là số vô tỉ.

b, x và y có thể là số vô tỉ . Chẳng hạn \(x=-\sqrt{2}\) ; \(y=\sqrt{2}\) thì \(x+y=-\sqrt{2}+\sqrt{2}=0\)

\(\frac{x}{y}=\frac{-\sqrt{2}}{\sqrt{2}}=-1\)

NM
20 tháng 3 2021

ta có 

\(\frac{1-2x}{1-x}+\frac{1-2y}{1-y}=1\Leftrightarrow\left(1-2x\right)\left(1-y\right)+\left(1-2y\right)\left(1-x\right)=\left(1-x\right)\left(1-y\right)\)

\(\Leftrightarrow1-2\left(x+y\right)+3xy=0\)

Vậy \(M=x^2+y^2-xy+\left(1-2\left(x+y\right)+3xy\right)=\left(x+y+1\right)^2\)

vậy ta có đpcm

15 tháng 10 2017

Ta có : \(x^3+y^3=2x^2y^2\Rightarrow\left(x^3+y^3\right)^2=4x^4y^4\)

            \(x^6+y^6+2x^3y^3=4x^4y^4\Rightarrow x^6+y^6-2x^3y^3=4x^4y^4-4x^3y^3\)

            \(\left(x^3-y^3\right)^2=4x^3y^3\left(xy-1\right)\Rightarrow xy-1=\frac{\left(x^3-y^3\right)^2}{4x^3y^3}\)

            \(\frac{xy-1}{xy}=\frac{\left(x^3-y^3\right)^2}{4x^4y^4}\) (chia cả 2 vế cho xy)\(\Rightarrow1-\frac{1}{xy}=\frac{\left(x^3-y^3\right)^2}{4x^4y^4}\)

              \(\Rightarrow\sqrt{1-\frac{1}{xy}}=\frac{x^3-y^3}{2x^2y^2}\)

15 tháng 10 2017

nhớ k mình nha