cho nữa đường tròn đường kính AB. trên cùng 1 mặt phẳng bờ AB vẽ 2 tiếp tuyến Ax và By. gọi M là một điểm bất kì thuộc nữa đường tròn tâm O, tiếp tuyến tại M cắt Ax tại C, cắt By tại D
a, Cmr CD=AC+BD
b, tính góc COD
c,Cmr AB là tiếp tuyến của đường tròn đường kính CD
d, tìm giá trị của M để tứ giác ABCD có chu vi nhỏ nhất
a: Xét (O) có
CM,CA là các tiếp tuyến
Do đó: CM=CA và OC là phân giác của \(\widehat{MOA}\)
Xét (O) có
DM,DB là các tiếp tuyến
Do đó: DM=DB và OD là phân giác của góc MOB
Ta có: CD=CM+MD
mà CM=CA và DM=DB
nên CD=CA+DB
b: OC là phân giác của góc MOA
=>\(\widehat{MOA}=2\cdot\widehat{MOC}\)
OD là phân giác của góc MOB
=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)
Ta có: \(\widehat{MOA}+\widehat{MOB}=180^0\)(hai góc kề bù)
=>\(2\cdot\left(\widehat{MOC}+\widehat{MOD}\right)=180^0\)
=>\(2\cdot\widehat{COD}=180^0\)
=>\(\widehat{COD}=90^0\)
c: Gọi N là trung điểm của CD
Vì ΔOCD vuông tại O
nên ΔOCD nội tiếp đường tròn đường kính CD
=>ΔCOD nội tiếp (N)
Xét hình thang ABDC có
O,N lần lượt là trung điểm của AB,CD
=>ON là đường trung bình của hình thang ABDC
=>ON//AC//BD
Ta có: ON//AC
AC\(\perp\)AB
Do đó: ON\(\perp\)AB
Xét (N) có
NO là bán kính
AB\(\perp\)NO tại O
Do đó: AB là tiếp tuyến của (N)
=>AB là tiếp tuyến của đường tròn đường kính CD