K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2023

a: Xét (A;AH) có

AH là bán kính

BC\(\perp\)AH tại H

Do đó: BC là tiếp tuyến của (A;AH)

b: Xét (A) có

BH,BD là các tiếp tuyến

Do đó: BH=BD và AB là phân giác của góc HAD

Xét (A) có

CE,CH là các tiếp tuyến

Do đó: CE=CH và AC là phân giác của góc HAE

c: BD+CE

=BH+CH

=BC

d: AB là phân giác của góc HAD

=>\(\widehat{HAD}=2\cdot\widehat{HAB}\)

AC là phân giác của góc HAE

=>\(\widehat{HAE}=2\cdot\widehat{HAC}\)

Ta có: \(\widehat{HAD}+\widehat{HAE}=\widehat{EAD}\)

=>\(\widehat{EAD}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)

=>\(\widehat{EAD}=2\cdot\widehat{BAC}=180^0\)

=>E,A,D thẳng hàng

a:\(BC=\sqrt{4^2+3^2}=5\left(cm\right)\)

AH=4*3/5=2,4cm

b: ΔCAD cân tại C

mà CH là đường cao

nên CH là phân giác của góc ACD

Xét ΔCAB và ΔCDB có

CA=CD

góc ACB=góc DCB

CB chung

Do dó: ΔCAB=ΔCDB

=>góc CDB=90 độ

=>BD là tiếp tuyến của (C)

2: Xét ΔCAD và ΔCEA có

góc C chung

góc CAD=góc CEA

=>ΔCAD đồng dạng với ΔCEA

=>CA/CE=CD/CA

=>CA^2=CE*CD

6 tháng 8 2018

Xét tam giác vuông AHC và tam giác vuông AED có:

AE = AH

\(\widehat{HAC}=\widehat{EAD}\)   (Hai góc đối đỉnh)

\(\Rightarrow\Delta AHC=\Delta AED\)   (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow AC=AD\)

Xét tam giác BDC có BA là đường cao đồng thời trung tuyến nên nó là tam giác cân. Vậy thì BA cũng là tia phân giác góc B.

Gọi H' là chân đường vuông góc hạ từ A xuống BD.

Ta thấy ngay \(\Delta H'BA=\Delta HBA\)   (Cạnh huyền góc nhọn)

Vậy thì AH' = AH

Suy ra BD là tiếp tuyến của đường tròn tâm A, bán kính AH.

31 tháng 12 2023

a: Ta có: ΔCAD cân tại C

mà CH là đường cao

nên CH là phân giác của góc ACD

Xét ΔCAB và ΔCDB có

CA=CD

\(\widehat{ACB}=\widehat{DCB}\)

CB chung

Do đó: ΔCAB=ΔCDB

=>\(\widehat{CAB}=\widehat{CDB}\)

mà \(\widehat{CAB}=90^0\)

nên \(\widehat{CDB}=90^0\)

=>BD là tiếp tuyến của (C)

b: Xét (C) có

PA,PM là các tiếp tuyến

Do đó: PA=PM và CP là phân giác của góc ACM

Vì CP là phân giác của góc ACM

nên \(\widehat{ACM}=2\cdot\widehat{PCM}\)

Xét (C) có

QM,QD là các tiếp tuyến

Do đó: CQ là phân giác của góc MCD

=>\(\widehat{MCD}=2\cdot\widehat{MCQ}\)

Ta có: \(\widehat{MCD}+\widehat{MCA}=\widehat{DCA}\)

=>\(\widehat{DCA}=2\cdot\left(\widehat{MCQ}+\widehat{MCP}\right)\)

=>\(\widehat{DCA}=2\cdot\widehat{PCQ}\)

=>\(\widehat{PCQ}=\dfrac{sđ\stackrel\frown{AD}}{2}\left(1\right)\)

Xét ΔBEF có

BC là đường cao

BC là đường phân giác

Do đó: ΔBEF cân tại B

=>BE=BF

Xét ΔBEF có \(\dfrac{BA}{BE}=\dfrac{BD}{BF}\)

nên AD//EF

=>\(\widehat{BAD}=\widehat{BEF}\)

mà \(\widehat{BAD}=\dfrac{1}{2}\cdot sđ\stackrel\frown{AD}\)(góc tạo bởi tiếp tuyến BA và dây cung AD)

nên \(\widehat{BEF}=\dfrac{1}{2}\cdot sđ\stackrel\frown{AD}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{BEF}=\widehat{PCQ}\)

 

a: O là trung điểm của BC

b: Xét \(\left(\dfrac{BH}{2}\right)\) có

ΔBDH là tam giác nội tiếp

BH là đường kính

Do đó: ΔBDH vuông tại D

Xét \(\left(\dfrac{CH}{2}\right)\)

ΔCHE nội tiếp đường tròn

CH là đường kính

Do đó: ΔCHE vuông tại E

Xét tứ giác ADHE có 

\(\widehat{AEH}=\widehat{ADH}=\widehat{EAD}=90^0\)

Do đó: ADHE là hình chữ nhật

18 tháng 9 2021

tính bán kính đường tròn ngoại tiếp làm sao ạ?

26 tháng 11 2022

Xét đường tròn đường kính HB có 

ΔHMB nội tiếp đường tròn

HB là đường kính

Do đó: ΔHMB vuông tại M

Xét đường tròn đường kính HC có 

ΔHNC nội tiếp đường tròn

HC là đường kính

Do đó: ΔHNC vuông tại N

Xét tứ giác AMHN có 

\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)

nên AMHN là hình chữ nhật