Tìm số nguyên dương n để n^5-n+2 là số chính phương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`k^2-k+10`
`=(k-1/2)^2+9,75>9`
`k^2-k+10` là số chính phương nên đặt
`k^2-k+10=a^2(a>3,a in N)`
`<=>4k^2-4k+40=4a^2`
`<=>(2k-1)^2+39=4a^2`
`<=>(2k-1-2a)(2k-1+2a)=-39`
`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`
`2k+2a>6`
`=>2k+2a-1> 5`
`=>2k+2a-1=39,2k-2a-1=-1`
`=>2k+2a=40,2k-2a=0`
`=>a=k,4k=40`
`=>k=10`
Vậy `k=10` thì `k^2-k+10` là SCP
`+)2k+2a-1=13,2k-2a-1=-3`
`=>2k+2a=14,2k-2a=-2`
`=>k+a=7,k-a=-1`
`=>k=3`
Vậy `k=3` hoặc `k=10` thì ..........
Với \(n=1\) thì \(A=2\) không là SCP.
Với \(n=2\) thì \(B=32\) không là SCP.
Với \(n>2\) thì ta có \(A=n^2-n+2< n^2\) và \(A=n^2-n+2>n^2-2n+1=\left(n-1\right)^2\).
Do đó \(\left(n-1\right)^2< A< n^2\) nên A không thể là số chính phương.
Vậy, không tồn tại số nguyên dương \(n\) nào thỏa ycbt.
Lời giải:
$n^5-n=n(n^4-1)=n(n^2-1)(n^2+1)=n(n-1)(n+1)(n^2+1)$
Vì $n,n-1,n+1$ là 3 số nguyên liên tiếp nên tích của chúng chia hết cho $3$
$\Rightarrow n^5-n=n(n-1)(n+1)(n^2+1)\vdots 3$
$\Rightarrow n^5-n+2$ chia $3$ dư $2$. Do đó nó không thể là scp vì scp chia $3$ chỉ có dư $0$ hoặc $1$.
Để \(n^2-n+2\) là số chính phương \(\Leftrightarrow n^2-n+2=a^2\left(a\in Z\right)\)
\(\Leftrightarrow4n^2-4n+8=4a^2\)
\(\left(4n^2-4n+1\right)+7=\left(2a\right)^2\)
\(\Leftrightarrow\left(2n-1\right)^2+7=\left(2a\right)^2\)
\(\Leftrightarrow\left(2n-1\right)^2-\left(2a\right)^2=-7\)
\(\Leftrightarrow\left(2n-2a-1\right)\left(2n+2a-1\right)=-7\)
=> 2n - 2a - 1 và 2n + 2a - 1 là ước của - 7
Đến đây liệt kê ước của - 7 rồi xét các TH !!!
đặt A2=n2+n+6
=>4A2=4n2+4n+24
=(2n+1)2+23
<=>(2A-2n-1)(2A+2n+1)=23
=>x=....
Đặt : A2 = n2 + n + 6
=> 4A2 = 4n2 + 4n + 24
= ( 2n + 1 )2 + 23
<=> ( 2A - 2n - 1 ) ( 2A + 2n + 1 )
= 23
Suy ra: x = 23
[[[[[[[[[[[[[[[ơ