Cho Sin x = 2/5 và 90° < x < 180° . Tính giá trị cosx (chỉ tui cách để tính bài này đi mn)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(tan^2x+cot^2x=2=2.tanx.cotx\)
\(\Leftrightarrow tan^2x+cot^2x-2tanx.cotx=0\)
\(\Leftrightarrow\left(tanx-cotx\right)^2=0\Leftrightarrow tanx=cotx=\dfrac{1}{tanx}\)
\(\Leftrightarrow tanx=\pm1\)
\(P=\dfrac{1}{cosx}-\dfrac{cosx}{1+sinx}=\dfrac{1+sinx-cos^2x}{cosx\left(1+sinx\right)}=\dfrac{sin^2x+sinx}{cosx\left(1+sinx\right)}\)
\(=\dfrac{sinx\left(1+sinx\right)}{cosx\left(1+sinx\right)}=tanx=\pm1\)
a: Sửa đề: sin x=4/5
cosx=-3/5; tan x=-4/3; cot x=-3/4
b: 270 độ<x<360 độ
=>cosx>0
=>cosx=1/2
tan x=căn 3; cot x=1/căn 3
\(90^0< a< 180^0\)
=>\(cosa< 0\)
\(sin^2a+cos^2a=1\)
=>\(cos^2a+\dfrac{9}{25}=1\)
=>\(cos^2a=1-\dfrac{9}{25}=\dfrac{16}{25}\)
mà cosa<0
nên \(cosa=-\dfrac{4}{5}\)
\(tana=\dfrac{sina}{cosa}=\dfrac{3}{5}:\dfrac{-4}{5}=-\dfrac{3}{4}\)
\(A=2\cdot cos^2a-5\cdot tan^2a\)
\(=2\cdot\left(-\dfrac{4}{5}\right)^2-5\cdot\left(-\dfrac{3}{4}\right)^2\)
\(=2\cdot\dfrac{16}{25}-5\cdot\dfrac{9}{16}\)
\(=\dfrac{32}{25}-\dfrac{45}{16}=\dfrac{-613}{400}\)
\(\dfrac{\pi}{2}< x< \pi\Rightarrow sinx>0\)
\(\Rightarrow sinx=\sqrt{1-cos^2x}=\sqrt{1-\left(-\dfrac{3}{5}\right)^2}=\dfrac{4}{5}\)
\(sin\left(x+\dfrac{\pi}{3}\right)=sinx.cos\left(\dfrac{\pi}{3}\right)+cosx.sin\left(\dfrac{\pi}{3}\right)=\dfrac{4}{5}.\dfrac{1}{2}+\left(-\dfrac{3}{5}\right).\dfrac{\sqrt{3}}{2}=\dfrac{4-3\sqrt{3}}{10}\)
\(cos\left(x+\dfrac{\pi}{4}\right)=cosx.cos\left(\dfrac{\pi}{4}\right)-sinx.sin\left(\dfrac{\pi}{4}\right)=-\dfrac{3}{5}.\dfrac{\sqrt{2}}{2}-\dfrac{4}{5}.\dfrac{\sqrt{2}}{2}=-\dfrac{7\sqrt{2}}{10}\)
Vì \(90^o< x< 180^o\Rightarrow\cos x< 0\)
Có: \(\sin^2x+\cos^2x=1\Leftrightarrow\left(\dfrac{2}{5}\right)^2+\cos^2x=1\Leftrightarrow\cos^2x=\dfrac{21}{25}\Leftrightarrow\cos x=-\dfrac{\sqrt{21}}{5}\left(vì\cos x< 0\right)\)