Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(tan^2x+cot^2x=2=2.tanx.cotx\)
\(\Leftrightarrow tan^2x+cot^2x-2tanx.cotx=0\)
\(\Leftrightarrow\left(tanx-cotx\right)^2=0\Leftrightarrow tanx=cotx=\dfrac{1}{tanx}\)
\(\Leftrightarrow tanx=\pm1\)
\(P=\dfrac{1}{cosx}-\dfrac{cosx}{1+sinx}=\dfrac{1+sinx-cos^2x}{cosx\left(1+sinx\right)}=\dfrac{sin^2x+sinx}{cosx\left(1+sinx\right)}\)
\(=\dfrac{sinx\left(1+sinx\right)}{cosx\left(1+sinx\right)}=tanx=\pm1\)
a: Sửa đề: sin x=4/5
cosx=-3/5; tan x=-4/3; cot x=-3/4
b: 270 độ<x<360 độ
=>cosx>0
=>cosx=1/2
tan x=căn 3; cot x=1/căn 3
\(90^0< a< 180^0\)
=>\(cosa< 0\)
\(sin^2a+cos^2a=1\)
=>\(cos^2a+\dfrac{9}{25}=1\)
=>\(cos^2a=1-\dfrac{9}{25}=\dfrac{16}{25}\)
mà cosa<0
nên \(cosa=-\dfrac{4}{5}\)
\(tana=\dfrac{sina}{cosa}=\dfrac{3}{5}:\dfrac{-4}{5}=-\dfrac{3}{4}\)
\(A=2\cdot cos^2a-5\cdot tan^2a\)
\(=2\cdot\left(-\dfrac{4}{5}\right)^2-5\cdot\left(-\dfrac{3}{4}\right)^2\)
\(=2\cdot\dfrac{16}{25}-5\cdot\dfrac{9}{16}\)
\(=\dfrac{32}{25}-\dfrac{45}{16}=\dfrac{-613}{400}\)
b) \(\sin x+\cos x=\dfrac{3}{2}\)
\(\left(\sin x+\cos x\right)^2=\dfrac{1}{4}\)
\(\sin^2x+\cos^2x+2\sin x\cos x=\dfrac{1}{4}\)
\(2\sin x\cos x=-\dfrac{3}{4}=\sin2x\)
a:\(a\cdot sin0+b\cdot cos0+c\cdot sin90\)
\(=a\cdot0+b\cdot1+c\cdot1\)
=b+c
b: \(a\cdot cos90+b\cdot sin90+c\cdot sin180\)
\(=a\cdot0+b\cdot1+c\cdot0\)
=b
c: \(a^2\cdot sin90+b^2\cdot cos90+c^2\cdot cos180\)
\(=a^2\cdot1+b^2\cdot0+c^2\left(-1\right)\)
\(=a^2-c^2\)
90 độ<x<180 độ
=>cosx<0
=>\(cosx=-\sqrt{1-\left(\dfrac{12}{13}\right)^2}=-\dfrac{5}{13}\)
\(tanx=\dfrac{12}{13}:\dfrac{-5}{13}=-\dfrac{12}{5}\)
\(E=\dfrac{6\cdot\dfrac{-12}{5}+\dfrac{12}{13}}{2\cdot\dfrac{-5}{13}+\dfrac{5}{12}}=\dfrac{-\dfrac{72}{5}+\dfrac{12}{13}}{-\dfrac{10}{13}+\dfrac{5}{12}}=\dfrac{10512}{275}\)
4.
Gọi H là chân đường cao kẻ từ C xuống đường thẳng d.
Ta có: \(CH=d\left(C;d\right)=\dfrac{\left|-3.2-4.5+4\right|}{\sqrt{3^2+4^2}}=\dfrac{22}{5}\)
Khi đó: \(S_{ABC}=\dfrac{1}{2}CH.AB=\dfrac{1}{2}.\dfrac{22}{5}.AB=15\Rightarrow AB=\dfrac{75}{11}\)
\(\Rightarrow IA=IB=\dfrac{75}{22}\)
Gọi \(A=\left(4m;3m+1\right)\) là điểm cần tìm.
Ta có: \(IA=\dfrac{75}{22}\Leftrightarrow\sqrt{\left(4m-2\right)^2+\left(3m-\dfrac{3}{2}\right)^2}=\dfrac{75}{22}\)
\(\Leftrightarrow\sqrt{25m^2-25m+\dfrac{25}{4}}=\dfrac{75}{22}\)
\(\Leftrightarrow\left|m-\dfrac{1}{2}\right|=\dfrac{15}{22}\)
\(\Leftrightarrow\left[{}\begin{matrix}m-\dfrac{1}{2}=\dfrac{15}{22}\\m-\dfrac{1}{2}=-\dfrac{15}{22}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{13}{11}\\m=-\dfrac{2}{11}\end{matrix}\right.\)
\(m=\dfrac{13}{11}\Rightarrow A=\left(\dfrac{52}{11};\dfrac{50}{11}\right)\Rightarrow B=\left(-\dfrac{8}{11};\dfrac{5}{11}\right)\)
Vậy \(A=\left(\dfrac{52}{11};\dfrac{50}{11}\right);B=\left(-\dfrac{8}{11};\dfrac{5}{11}\right)\)
1.
\(P=\left(m;m+1\right)\) là điểm cần tìm
\(\Rightarrow NP=\sqrt{\left(m-3\right)^2+m^2}=\sqrt{2m^2-6m+9}\)
Ta có: \(NM=NP\)
\(\Leftrightarrow\sqrt{\left(-1-3\right)^2+\left(2-1\right)^2}=\sqrt{2m^2-6m+9}\)
\(\Leftrightarrow m^2-3m-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=4\\m=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}P=\left(4;5\right)\\P=\left(-1;0\right)\end{matrix}\right.\)
Vậy \(P=\left(4;5\right)\) hoặc \(P=\left(-1;0\right)\)
Vì \(90^o< x< 180^o\Rightarrow\cos x< 0\)
Có: \(\sin^2x+\cos^2x=1\Leftrightarrow\left(\dfrac{2}{5}\right)^2+\cos^2x=1\Leftrightarrow\cos^2x=\dfrac{21}{25}\Leftrightarrow\cos x=-\dfrac{\sqrt{21}}{5}\left(vì\cos x< 0\right)\)