a) Tìm ba số biết rằng số thứ nhất, số thứ hai, số thứ ba lần lượt với 3,5,7 và hai lần của số thứ nhất ít hơn số thứ ba 11 đơn vị
b) Tìm ba số biết rằng số thứ nhất, số thứ hai, số thứ ba lần lượt tỷ lệ là 4,5,6 và số thứ ba nhiều hơn số thứ nhất là 4 đơn vị
b, Gọi ba số cần tìm lần lượt là:
\(x;y;z\) theo bài ra ta có:
\(\dfrac{x}{4}\) = \(\dfrac{y}{5}\) = \(\dfrac{z}{6}\);
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{z}{6}\) = \(\dfrac{x}{4}\) = \(\dfrac{z-x}{6-4}\) = \(\dfrac{4}{2}\) = 2
z = 2 x 6 = 12
\(x\) = 2 x 4 = 8
\(\dfrac{y}{5}\) = 2 ⇒ y = 2 x 5 = 10
Vậy \(x\) = 8; y = 10; z = 12
a, Gọi ba số cần tìm lần lượt là: \(x\); y; z
Theo bài ra ta có: \(\dfrac{x}{3}\) = \(\dfrac{y}{5}\) = \(\dfrac{z}{7}\); z - 2\(x\) = 11
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}\) = \(\dfrac{2x}{6}\) = \(\dfrac{z}{7}\) = \(\dfrac{z-2x}{7-6}\) = \(\dfrac{4}{1}\) = 4
\(x\) = 4x3 = 12; z = 4 x 7 = 28
\(\dfrac{y}{5}\) = 4 ⇒ y = 4x5 =20
Vậy \(x\) = 12; y = 20; z = 28